Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 136504, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613298

RESUMO

The iron-based superconductor FeSe_{1-x}Te_{x} has recently gained significant attention as a host of two distinct physical phenomena: (i) Majorana zero modes that can serve as potential topologically protected qubits, and (ii) a realization of the orbital-selective Mott transition. In this Letter, we connect these two phenomena and provide new insights into the interplay between strong electronic correlations and nontrivial topology in FeSe_{1-x}Te_{x}. Using linearized quasiparticle self-consistent GW plus dynamical mean-field theory, we show that the topologically protected Dirac surface state has substantial Fe(d_{xy}) character. The proximity to the orbital-selective Mott transition plays a dual role: it facilitates the appearance of the topological surface state by bringing the Dirac cone close to the chemical potential but destroys the Z_{2} topological superconductivity when the system is too close to the orbital-selective Mott phase. We derive a reduced effective Hamiltonian that describes the topological band. Its parameters capture all the chemical trends found in the first principles calculation. Our findings provide a framework for further study of the interplay between strong electronic correlations and nontrivial topology in other iron-based superconductors.

2.
Nano Lett ; 22(17): 6900-6906, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35976289

RESUMO

Nanoscale inhomogeneity can profoundly impact properties of two-dimensional van der Waals materials. Here, we reveal how sulfur substitution on the selenium atomic sites in Fe1-ySe1-xSx (0 ≤ x ≤ 1, y ≤ 0.1) causes Fe-Ch (Ch = Se, S) bond length differences and strong disorder for 0.4 ≤ x ≤ 0.8. There, the superconducting transition temperature Tc is suppressed and disorder-related scattering is enhanced. The high-temperature metallic resistivity in the presence of strong disorder exceeds the Mott limit and provides an example of the violation of Matthiessen's rule and the Mooij law, a dominant effect when adding moderate disorder past the Drude/Matthiessen's regime in all materials. The scattering mechanism responsible for the resistivity above the Mott limit is unrelated to phonons and arises for strong Se/S atom disorder in the tetrahedral surrounding of Fe. Our findings shed light on the intricate connection between the nanostructural details and the unconventional scattering mechanism, which is possibly related to charge-nematic or magnetic spin fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA