Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 73(3): 448-458, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38123984

RESUMO

OBJECTIVE: Patients with Crohn's disease (CD) exhibit great heterogeneity in disease presentation and treatment responses, where distinct gut bacteria and immune interactions may play part in the yet unresolved disease aetiology. Given the role of antibodies in the barrier defence against microbes, we hypothesised that gut bacterial antibody-coating patterns may influence underlying disease-mediated processes. DESIGN: Absolute and relative single and multicoating of gut bacteria with IgA, IgG1, IgG2, IgG3 and IgG4 in patients with CD and healthy controls were characterised and compared with disease activity. IgG2-coated and non-coated taxa from patients with severe CD were identified, profiled for pathogenic characteristics and monitored for enrichment during active disease across cohorts. RESULTS: Patients with severe CD exhibited higher gut bacterial IgG2-coating. Supervised clustering identified 25 bacteria to be enriched in CD patients with high IgG2-coating. Sorting, sequencing and in silico-based assessments of the virulent potential of IgG2-coated and bulk stool bacteria were performed to evaluate the nature and pathogenicity of IgG2-coated and non-coated bacteria. The analyses demonstrated IgG2-coating of both known pathogenic and non-pathogenic bacteria that co-occurred with two non-coated pathobionts, Campylobacter and Mannheimia. The two non-coated pathobionts exhibited low prevalence, rarely coincided and were strongly enriched during disease flares in patients with CD across independent and geographically distant cohorts. CONCLUSION: Distinct gut bacterial IgG2-coating was demonstrated in patients with severe CD and during disease flares. Co-occurrence of non-coated pathobionts with IgG2-coated bacteria points to an uncontrolled inflammatory condition in severe CD mediated via escape from antibody coating by two gut pathobionts.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Bactérias , Anticorpos Antibacterianos , Imunoglobulina G
2.
Brain Behav Immun ; 115: 450-457, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914103

RESUMO

INTRODUCTION: Maternal inflammation during pregnancy may affect early neurodevelopment in offspring as suggested by preclinical and register data. However, clinical evidence for risk of aberrant neurodevelopment later in childhood is scarce. In the population-based COPSAC2010 mother-child cohort, we investigated associations between maternal inflammation levels during pregnancy and the risk of a diagnosis of ADHD as well as the load of ADHD symptoms in the children at age 10. METHODS: The COPSAC2010 cohort consists of 700 mother-child pairs followed prospectively since pregnancy week 24.Maternal high-sensitivity C-Reactive Protein (hs-CRP) level at week 24 of gestation was investigated in relation to child neurodevelopment by age 10 using logistic and linear regression models with extensive confounder adjustment, including socioeconomic status and maternal polygenic risk of ADHD. The children completed a comprehensive examination of neurodevelopment including categorical (i.e., diagnostic) and dimensional (i.e., symptom load) psychopathology using the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version (K-SADS-PL) and parental rated ADHD-Rating Scale (ADHD-RS). RESULTS: A total of 604 (86 %) of the 700 children in the COPSAC2010 cohort participated in the COPSYCH visit at age 10. Sixty-five (10.8 %) fulfilled a research diagnosis of ADHD (16 girls and 49 boys). Higher maternal hs-CRP level in pregnancy at week 24 (median 5.4 mg/L) was significantly associated with increased risk for a diagnosis of ADHD, adjusted OR 1.40, 95 %CI (1.16-1.70), p = 0.001. Additionally, higher maternal hs-CRP was associated with increased ADHD symptom load in the entire cohort, reflected by ADHD-RS raw scores. DISCUSSION: These clinical data demonstrated a robust association of prenatal maternal inflammation assessed by hs-CRP with a diagnosis of ADHD by age 10. Moreover, maternal inflammation was associated with ADHD symptom load in the complete cohort. Identifying inflammation as an important marker will provide a potential target for future increased awareness and prevention during pregnancy thereby ultimately improving neurodevelopmental outcomes in children.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Efeitos Tardios da Exposição Pré-Natal , Masculino , Feminino , Gravidez , Humanos , Criança , Proteína C-Reativa , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Inflamação/complicações , Pais
3.
J Allergy Clin Immunol ; 151(1): 212-221, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075322

RESUMO

BACKGROUND: Exposure to ambient air pollution has been linked to asthma, allergic rhinitis, and other inflammatory disorders, but little is known about the underlying mechanisms. OBJECTIVE: We studied the potential mechanisms leading from prenatal ambient air pollution exposure to asthma and allergy in childhood. METHODS: Long-term exposure to nitrogen dioxide (NO2) as well as to particulate matter with a diameter of ≤2.5 and ≤10 µm (PM2.5 and PM10) were modeled at the residence level from conception to 6 years of age in 700 Danish children followed clinically for development of asthma and allergy. Nasal mucosal immune mediators were assessed at age 4 weeks and 6 years, inflammatory markers in blood at 6 months, and nasal epithelial DNA methylation and gene expression at age 6 years. RESULTS: Higher prenatal air pollution exposure with NO2, PM2.5, and PM10 was associated with an altered nasal mucosal immune profile at 4 weeks, conferring an increased odds ratio [95% confidence interval] of 2.68 [1.58, 4.62] for allergic sensitization and 2.63 [1.18, 5.81] for allergic rhinitis at age 6 years, and with an altered immune profile in blood at age 6 months conferring increased risk of asthma at age 6 years (1.80 [1.18, 2.76]). Prenatal exposure to ambient air pollution was not robustly associated with immune mediator, epithelial DNA methylation, or gene expression changes in nasal cells at age 6 years. CONCLUSION: Prenatal exposure to ambient air pollution was associated with early life immune perturbations conferring risk of allergic rhinitis and asthma. These findings suggest potential mechanisms of prenatal exposure to ambient air pollution on the developing immune system.


Assuntos
Poluentes Atmosféricos , Asma , Efeitos Tardios da Exposição Pré-Natal , Rinite Alérgica , Criança , Gravidez , Feminino , Humanos , Lactente , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Asma/etiologia , Asma/induzido quimicamente , Material Particulado/efeitos adversos , Rinite Alérgica/induzido quimicamente , Exposição Ambiental/efeitos adversos
4.
J Allergy Clin Immunol ; 152(3): 667-675, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150361

RESUMO

BACKGROUND: The mechanisms underlying the protective effect of older siblings on allergic disease remain unclear but may relate to the infant gut microbiota. OBJECTIVE: We sought to investigate whether having older siblings decreases the risk of IgE-mediated food allergy by accelerating the maturation of the infant gut microbiota. METHODS: In a birth cohort assembled using an unselected antenatal sampling frame (n = 1074), fecal samples were collected at 1 month, 6 months, and 1 year, and food allergy status at 1 year was determined by skin prick test and in-hospital food challenge. We used 16S rRNA gene amplicon sequencing to derive amplicon sequence variants. Among a random subcohort (n = 323), microbiota-by-age z scores at each time point were calculated using fecal amplicon sequence variants to represent the gut microbiota maturation over the first year of life. RESULTS: A greater number of siblings was associated with a higher microbiota-by-age z score at age 1 year (ß  = 0.15 per an additional sibling; 95% CI, 0.05-0.24; P = .003), which was in turn associated with decreased odds of food allergy (odds ratio, 0.45; 95% CI, 0.33-0.61; P < .001). Microbiota-by-age z scores mediated 63% of the protective effect of siblings. Analogous associations were not observed at younger ages. CONCLUSIONS: The protective effect of older siblings on the risk of developing IgE-mediated food allergy during infancy is substantially mediated by advanced maturation of the gut microbiota at age 1 year.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Gravidez , Lactente , Humanos , Feminino , Irmãos , RNA Ribossômico 16S/genética , Hipersensibilidade Alimentar/prevenção & controle , Imunoglobulina E
5.
J Transl Med ; 21(1): 354, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246224

RESUMO

BACKGROUND: Lipid A is the primary immunostimulatory part of the lipopolysaccharide (LPS) molecule. The inflammatory response of LPS varies and depends upon the number of acyl chains and phosphate groups in lipid A which is specific for a bacterial species or strain. Traditional LPS quantification assays cannot distinguish between the acylation degree of lipid A molecules, and therefore little is known about how bacteria with different inflammation-inducing potencies affect fractional exhaled nitric oxide (FeNO). We aimed to explore the association between pro-inflammatory hexa- and less inflammatory penta-acylated LPS-producing oral bacteria and FeNO as a marker of airway inflammation. METHODS: We used data from a population-based adult cohort from Norway (n = 477), a study center of the RHINESSA multi-center generation study. We applied statistical methods on the bacterial community- (prediction with MiRKAT) and genus-level (differential abundance analysis with ANCOM-BC) to investigate the association between the oral microbiota composition and FeNO. RESULTS: We found the overall composition to be significantly associated with increasing FeNO levels independent of covariate adjustment, and abundances of 27 bacterial genera to differ in individuals with high FeNO vs. low FeNO levels. Hexa- and penta-acylated LPS producers made up 2.4% and 40.8% of the oral bacterial genera, respectively. The Bray-Curtis dissimilarity within hexa- and penta-acylated LPS-producing oral bacteria was associated with increasing FeNO levels independent of covariate adjustment. A few single penta-acylated LPS producers were more abundant in individuals with low FeNO vs. high FeNO, while hexa-acylated LPS producers were found not to be enriched. CONCLUSIONS: In a population-based adult cohort, FeNO was observed to be associated with the overall oral bacterial community composition. The effect of hexa- and penta-acylated LPS-producing oral bacteria was overall significant when focusing on Bray-Curtis dissimilarity within each of the two communities and FeNO levels, but only penta-acylated LPS producers appeared to be reduced or absent in individuals with high FeNO. It is likely that the pro-inflammatory effect of hexa-acylated LPS producers is counteracted by the dominance of the more abundant penta-acylated LPS producers in this population-based adult cohort involving mainly healthy individuals.


Assuntos
Lipídeo A , Lipopolissacarídeos , Humanos , Adulto , Teste da Fração de Óxido Nítrico Exalado , Inflamação , Bactérias , Óxido Nítrico
6.
Clin Exp Allergy ; 53(12): 1268-1278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849355

RESUMO

INTRODUCTION: Rural children have a lower risk of asthma and atopic diseases than urban children. However, whether indoor microbiota in non-farming rural homes provides protection is unclear. METHODS: Here, we examine if microbes in the beds of rural and urban infants are associated with later development of atopic diseases. We studied fungi and bacteria in the beds of 6-month-old infants (n = 514) in association with the risk of asthma, allergic rhinitis, eczema and aeroallergen sensitization at 6 years of age in the prospective COPSAC2010 cohort. RESULTS: Both fungal and bacterial diversity were lower in the beds of children, who later developed allergic rhinitis (-0.22 [-0.43,-0.01], padj = .04 and -.24 [-0.42,-0.05], padj = .01 respectively) and lower bacterial richness was discovered in beds of children later developing asthma (-41.34 [-76.95,-5.73], padj = .02) or allergic rhinitis (-45.65 [-81.19,-10.10], padj = .01). Interestingly, higher fungal diversity and richness were discovered in the beds of children developing eczema (0.23 [0.02,0.43], padj = .03 and 29.21 [1.59,56.83], padj = .04 respectively). We defined a limited set of fungal and bacterial genera that predicted rural/urban environment. Some rural-associated bacterial genera such as Romboutsia and Bacillus and fungal genera Spegazzinia and Physcia were also associated with reduced risk of diseases, including eczema. These fungal and bacterial fingerprints predicting the living environment were associated with asthma and allergic rhinitis, but not eczema, with rural compositions being protective. The bed dust bacteria mediated 27% of the protective association of a rural living environment for allergic rhinitis (p = .04). CONCLUSIONS: Bed dust microbes can be differentially associated with airway- and skin-related diseases. The differing bed dust microbiota between rural and urban infants may influence their later risk of asthma and allergic rhinitis.


Assuntos
Asma , Eczema , Rinite Alérgica , Lactente , Criança , Humanos , Estudos Prospectivos , Asma/epidemiologia , Asma/etiologia , Poeira , Bactérias , Rinite Alérgica/epidemiologia , Rinite Alérgica/etiologia , Fungos
7.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37791757

RESUMO

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Assuntos
Alginatos , Bactérias , Humanos , Alginatos/metabolismo , Bactérias/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato
8.
Mol Psychiatry ; 27(10): 4123-4135, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35444255

RESUMO

The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.


Assuntos
Transtorno Bipolar , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Transtorno Bipolar/metabolismo , Eixo Encéfalo-Intestino , Metaboloma , Encéfalo/metabolismo
9.
Parasite Immunol ; 45(7): e12998, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282739

RESUMO

Intestinal tuft cells have been shown to induce type 2 immune responses during viable parasite infections, but whether oral supplementation with a parasitic exudate is able to promote type 2 immune responses that have been shown to positively regulate obesogenic metabolic processes is yet unresolved. High-fat fed mice were gavaged with pseudocoelomic fluid (PCF) derived from the helminth Ascaris suum or saline thrice a week during weeks 5-9, followed by examination of intestinal tuft cell activity, immune, and metabolic parameters. Helminth PCF upregulated expression of distinct genes in small intestinal tuft cells, including genes involved in regulation of RUNX1 and organic cation transporters. Helminth PCF also enhanced levels of innate lymphoid cells in the ileum, and eosinophils in epididymal white adipose tissue (eWAT). Network analyses revealed two distinct immunometabolic cues affected by oral helminth PCF in high-fat fed mice: one coupling the small intestinal tuft cell responses to the fat-to-lean mass ratio and a second coupling eosinophils in eWAT to general regulation of body fat mass. Our findings point to specific mechanisms by which oral supplementation with helminth PCF may translate into systems-wide effects linking to reduced body and fat mass gain in mice during high-fat feeding.


Assuntos
Helmintos , Imunidade Inata , Camundongos , Animais , Sinais (Psicologia) , Linfócitos , Tecido Adiposo , Administração Oral
10.
J Allergy Clin Immunol ; 150(3): 622-630, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35381269

RESUMO

BACKGROUND: Asthma with severe exacerbation is one of the most common causes of hospitalization among young children. Exacerbations are typically triggered by respiratory infections, but the host factors causing recurrent infections and exacerbations in some children are poorly understood. As a result, current treatment options and preventive measures are inadequate. OBJECTIVE: We sought to identify genetic interaction associated with the development of childhood asthma. METHODS: We performed an exhaustive search for pairwise interaction between genetic single nucleotide polymorphisms using 1204 cases of a specific phenotype of early childhood asthma with severe exacerbations in patients aged 2 to 6 years combined with 5328 nonasthmatic controls. Replication was attempted in 3 independent populations, and potential underlying immune mechanisms were investigated in the COPSAC2010 and COPSAC2000 birth cohorts. RESULTS: We found evidence of interaction, including replication in independent populations, between the known childhood asthma loci CDHR3 and GSDMB. The effect of CDHR3 was dependent on the GSDMB genotype, and this interaction was more pronounced for severe and early onset of disease. Blood immune analyses suggested a mechanism related to increased IL-17A production after viral stimulation. CONCLUSIONS: We found evidence of interaction between CDHR3 and GSDMB in development of early childhood asthma, possibly related to increased IL-17A response to viral infections. This study demonstrates the importance of focusing on specific disease subtypes for understanding the genetic mechanisms of asthma.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Asma/genética , Proteínas Relacionadas a Caderinas , Caderinas/genética , Predisposição Genética para Doença , Humanos , Interleucina-17/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Citotóxicas Formadoras de Poros
11.
Gastroenterology ; 160(6): 2029-2042.e16, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482223

RESUMO

BACKGROUND & AIMS: Elucidating key factors affecting personal responses to food is the first step toward implementing personalized nutrition strategies in for example weight loss programs. Here, we aimed to identify factors of importance for individual weight loss trajectories in a natural setting where participants were provided dietary advice but otherwise asked to self-manage the daily caloric intake and data reporting. METHODS: A 6-month weight-reduction program with longitudinal collection of dietary, physical activity, body weight, and fecal microbiome data as well as single-nucleotide polymorphism genotypes in 83 participants was conducted, followed by integration of the high-dimensional data to define the most determining factors for weight loss in a dietician-guided, smartphone-assisted dieting program. RESULTS: The baseline gut microbiota was found to outperform other factors as a predieting predictor of individual weight loss trajectories. Weight loss was also linked to the magnitude of changes in abundances of certain bacterial species during dieting. Ruminococcus gnavus (MGS0160) was significantly enriched in obese individuals and decreased during weight loss. Akkermansia muciniphila (MGS0120) and Alistipes obesi (MGS0342) were significantly enriched in lean individuals, and their abundance increased during dieting. Finally, Blautia wexlerae (MGS0575) and Bacteroides dorei (MGS0187) were the strongest predictors for weight loss when present in high abundance at baseline. CONCLUSION: Altogether, the baseline gut microbiota was found to excel as a central personal factor in capturing the relationship between dietary factors and weight loss among individuals on a dieting program.


Assuntos
Trajetória do Peso do Corpo , Dieta Redutora , Microbioma Gastrointestinal , Obesidade/microbiologia , Magreza/microbiologia , Redução de Peso , Adulto , Akkermansia/isolamento & purificação , Bacteroides/isolamento & purificação , Bacteroidetes/isolamento & purificação , Clostridiales/isolamento & purificação , Exercício Físico , Fezes/microbiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Obesidade/tratamento farmacológico , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Programas de Redução de Peso , Adulto Jovem
12.
Gastroenterology ; 160(7): 2423-2434.e5, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662387

RESUMO

BACKGROUND & AIMS: IgA exerts its primary function at mucosal surfaces, where it binds microbial antigens to regulate bacterial growth and epithelial attachment. One third of individuals with IgA deficiency (IgAD) suffers from recurrent mucosal infections, possibly related to an altered microbiota. We aimed to delineate the impact of IgAD and the IgA-autoantibody status on the composition and functional capacity of the gut microbiota. METHODS: We performed a paired, lifestyle-balanced analysis of the effect of IgA on the gut microbiota composition and functionality based on fecal samples from individuals with IgAD and IgA-sufficient household members (n = 100), involving quantitative shotgun metagenomics, species-centric functional annotation of gut bacteria, and strain-level analyses. We supplemented the data set with 32 individuals with IgAD and examined the influence of IgA-autoantibody status on the composition and functionality of the gut microbiota. RESULTS: The gut microbiota of individuals with IgAD exhibited decreased richness and diversity and was enriched for bacterial species encoding pathogen-related functions including multidrug and antimicrobial peptide resistance, virulence factors, and type III and VI secretion systems. These functional changes were largely attributed to Escherichia coli but were independent of E coli strain variations and most prominent in individuals with IgAD with IgA-specific autoreactive antibodies. CONCLUSIONS: The microbiota of individuals with IgAD is enriched for species holding increased proinflammatory potential, thereby potentially decreasing the resistance to gut barrier-perturbing events. This phenotype is especially pronounced in individuals with IgAD with IgA-specific autoreactive antibodies, thus warranting a screening for IgA-specific autoreactive antibodies in IgAD to identify patients with IgAD with increased risk for gastrointestinal implications.


Assuntos
Autoanticorpos/metabolismo , Microbioma Gastrointestinal/imunologia , Deficiência de IgA/imunologia , Deficiência de IgA/microbiologia , Imunoglobulina A/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Eur Respir J ; 59(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34887324

RESUMO

BACKGROUND: Birth by caesarean section is linked to an increased risk of developing asthma, but the underlying mechanisms are unclear. OBJECTIVE: To elucidate the link between birth by caesarean section and asthma using newborn metabolomic profiles and integrating early-life gut microbiome data and cord blood immunology. METHODS: We investigated the influence of caesarean section on liquid chromatography mass spectrometry metabolomic profiles of dried blood spots from newborns of the two independent Copenhagen Prospective Studies on Asthma in Childhood cohorts, i.e. COPSAC2010 (n=677) and COPSAC2000 (n=387). We assessed the associations between the caesarean section metabolic profile, gut microbiome data and frequency of cord blood regulatory T-cells (Tregs) at 1 week of age. RESULTS: In COPSAC2010, a partial least square discriminant analysis model showed that children born by caesarean section versus natural delivery had different metabolic profiles (area under the curve (AUC)=0.77, p=2.2×10-16), which was replicated in COPSAC2000 (AUC=0.66, p=1.2×10-5). The metabolic profile of caesarean section was significantly associated with an increased risk of asthma at school age in both COPSAC2010 (p=0.03) and COPSAC2000 (p=0.005). Caesarean section was associated with lower abundance of tryptophan, bile acid and phenylalanine metabolites, indicative of a perturbed gut microbiota. Furthermore, gut bacteria dominating after natural delivery, i.e. Bifidobacterium and Bacteroides were correlated with caesarean section-discriminative microbial metabolites, suggesting maternal microbial transmission during birth regulating the newborn's metabolism. Finally, the caesarean section metabolic profile was associated with frequency of cord blood Tregs. CONCLUSIONS: These findings propose that caesarean section programmes the risk of childhood asthma through perturbed immune responses and gut microbial colonisation patterns reflected in the blood metabolome at birth.


Assuntos
Asma , Microbioma Gastrointestinal , Asma/etiologia , Cesárea/efeitos adversos , Criança , Feminino , Humanos , Recém-Nascido , Metaboloma , Gravidez , Estudos Prospectivos
14.
J Immunol ; 204(11): 3042-3055, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284331

RESUMO

Fermentable dietary fibers promote the growth of beneficial bacteria, can enhance mucosal barrier integrity, and reduce chronic inflammation. However, effects on intestinal type 2 immune function remain unclear. In this study, we used the murine whipworm Trichuris muris to investigate the effect of the fermentable fiber inulin on host responses to infection regimes that promote distinct Th1 and Th2 responses in C57BL/6 mice. In uninfected mice, dietary inulin stimulated the growth of beneficial bacteria, such as Bifidobacterium (Actinobacteria) and Akkermansia (Verrucomicrobia). Despite this, inulin prevented worm expulsion in normally resistant mice, instead resulting in chronic infection, whereas mice fed an equivalent amount of nonfermentable fiber (cellulose) expelled worms normally. Lack of expulsion in the mice fed inulin was accompanied by a significantly Th1-skewed immune profile characterized by increased T-bet+ T cells and IFN-γ production in mesenteric lymph nodes, increased expression of Ido1 in the cecum, and a complete absence of mast cell and IgE production. Furthermore, the combination of dietary inulin and high-dose T. muris infection caused marked dysbiosis, with expansion of the Firmicutes and Proteobacteria phyla, near elimination of Bacteroidetes, and marked reductions in cecal short-chain fatty acids. Neutralization of IFN-γ during infection abrogated Ido1 expression and was sufficient to restore IgE production and worm expulsion in inulin-fed mice. Our results indicate that, whereas inulin promoted gut health in otherwise healthy mice, during T. muris infection, it exacerbated inflammatory responses and dysbiosis. Thus, the positive effects of fermentable fiber on gut inflammation appear to be context dependent, revealing a novel interaction between diet and infection.


Assuntos
Fibras na Dieta/metabolismo , Inflamação/imunologia , Inulina/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Tricuríase/imunologia , Trichuris/fisiologia , Animais , Progressão da Doença , Disbiose , Fermentação , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
15.
Nature ; 535(7612): 376-81, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409811

RESUMO

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Assuntos
Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Metaboloma , Soro/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Bacteroides/fisiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Jejum/sangue , Jejum/metabolismo , Intolerância à Glucose/sangue , Intolerância à Glucose/microbiologia , Humanos , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Países Baixos , Prevotella/fisiologia
16.
Scand J Public Health ; 50(7): 988-994, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36245407

RESUMO

Background: Persistent physical symptoms (e.g. pain, fatigue) are prevalent in the population and some persons may develop a functional somatic disorder (FSD). We still need to explore the limits between general bodily sensations and FSD, and great controversies exist as regard delimitation, occurrence, risk factors, prognosis, and costs of FSD in the general population. This is mainly due to the lack of focused, sufficient powered, population-based epidemiological studies. Material and Methods: The DanFunD study is the largest focused population-based study on FSD and has the potential to answer these crucial questions regarding the FSD disorders. DanFunD has its origin in the Copenhagen area of Denmark and was initiated in 2009 by an interdisciplinary team of researchers including basic scientists, clinical researchers, epidemiologists, and public health researchers. A population-based cohort of nearly 10,000 people have filled in detailed questionnaires, gone through a thorough health examination, and a biobank is established. The cohort was re-examined after five years. Results:The prevalence of FSD in the Danish population is about 10-15% and is twice as common in women as in men. Persons with FSD report impaired daily activities and low self-perceived health, which qualifies FSD as a major public health problem. The research plan to unravel the risk factors for FSD employs a bio-psycho-social approach according to a detailed plan. Preliminary results are presented, and work is in progress. Likewise, plans for assessing prognosis and health care costs are provided. Conclusion: We invite researchers in the field to collaborate on this unique data material.


Assuntos
Saúde Pública , Transtornos Somatoformes , Feminino , Humanos , Masculino , Estudos de Coortes , Prevalência , Fatores de Risco , Inquéritos e Questionários , Dinamarca/epidemiologia , Transtornos Somatoformes/epidemiologia
17.
J Allergy Clin Immunol ; 148(1): 234-243, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338536

RESUMO

BACKGROUND: Urbanization is linked with an increased burden of asthma and atopic traits. A putative mechanism is insufficient exposure to beneficial microbes early in life, leading to immune dysregulation, as was previously shown for indoor microbial exposures. OBJECTIVE: Our aim was to investigate whether urbanization is associated with the microbiota composition in the infants' body and early immune function, and whether these contribute to the later risk of asthma and atopic traits. METHODS: We studied the prospective Copenhagen Prospective Studies on Asthma in Childhood 20102010 mother-child cohort of 700 children growing up in areas with different degrees of urbanization. During their first year of life, airway and gut microbiotas, as well as immune marker concentrations, were defined. When the children were 6 years of age, asthma and atopic traits were diagnosed by pediatricians. RESULTS: In adjusted analyses, the risk of asthma and aeroallergen sensitization were increased in urban infants. The composition of especially airway but also gut microbiotas differed between urban and rural infants. The living environment-related structure of the airway microbiota was already associated with immune mediator concentrations at 1 month of age. An urbanized structure of the airway and gut microbiotas was associated with an increased risk of asthma coherently during multiple time points and also with the risks of eczema and sensitization. CONCLUSION: Our findings suggest that urbanization-related changes in the infant microbiota may elevate the risk of asthma and atopic traits, probably via cross talk with the developing immune system. The airways may facilitate this effect, as they are open for colonization by environmental airborne microbes and serve as an immune interface.


Assuntos
Dermatite Atópica/imunologia , Microbiota/imunologia , Alérgenos/imunologia , Asma/imunologia , Criança , Estudos de Coortes , Eczema/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Lactente , Recém-Nascido , Estudos Prospectivos , População Rural , Urbanização
18.
J Allergy Clin Immunol ; 148(3): 669-678, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310928

RESUMO

Environmental exposures during pregnancy that alter both the maternal gut microbiome and the infant's risk of allergic disease and asthma include a traditional farm environment and consumption of unpasteurized cow's milk, antibiotic use, dietary fiber, and psychosocial stress. Multiple mechanisms acting in concert may underpin these associations and prime the infant to acquire immune competence and homeostasis following exposure to the extrauterine environment. Cellular and metabolic products of the maternal gut microbiome can promote the expression of microbial pattern recognition receptors, as well as thymic and bone marrow hematopoiesis relevant to regulatory immunity. At birth, transmission of maternally derived bacteria likely leverages this in utero programming to accelerate postnatal transition from a TH2- to TH1- and TH17-dominant immune phenotype and maturation of regulatory immune mechanisms, which in turn reduce the child's risk of allergic disease and asthma. Although our understanding of these phenomena is rapidly evolving, the field is relatively nascent, and we are yet to translate existing knowledge into interventions that substantially reduce disease risk in humans. Here, we review evidence that the maternal gut microbiome impacts the offspring's risk of allergic disease and asthma, discuss challenges and future directions for the field, and propose the hypothesis that maternal carriage of Prevotella copri during pregnancy decreases the offspring's risk of allergic disease via production of succinate, which in turn promotes bone marrow myelopoiesis of dendritic cell precursors in the fetus.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade/epidemiologia , Animais , Suplementos Nutricionais , Feminino , Humanos , Recém-Nascido , Gravidez , Probióticos , Risco
19.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682818

RESUMO

Tape stripping is a non-invasive skin sampling technique, which has recently gained use for the study of the transcriptome of atopic dermatitis (AD), a common inflammatory skin disorder characterized by a defective epidermal barrier and perturbated immune response. Here, we performed BRB-seq-a low cost, multiplex-based, transcriptomic profiling technique-on tape-stripped skin from 30 AD patients and 30 healthy controls to evaluate the methods' ability to assess the epidermal AD transcriptome. An AD signature consisting of 91 differentially expressed genes, specific for skin barrier and inflammatory response, was identified. The gene expression in the outermost layers, stratum corneum and stratum granulosum, of the skin showed highest correlation between tape-stripped skin and matched full-thickness punch biopsies. However, we observed that low and highly variable transcript counts, probably due to low RNA yield and RNA degradation in the tape-stripped skin samples, were a limiting factor for epidermal transcriptome profiling as compared to punch biopsies. We conclude that deep BRB-seq of tape-stripped skin is needed to counteract large between-sample RNA yield variation and highly zero-inflated data in order to apply this protocol for population-wide screening of the epidermal transcriptome in inflammatory skin diseases.


Assuntos
Dermatite Atópica , Dermatite Atópica/metabolismo , Epiderme/metabolismo , Humanos , RNA/metabolismo , Pele/metabolismo , Transcriptoma
20.
Clin Exp Allergy ; 51(7): 892-901, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33987892

RESUMO

BACKGROUND: Several childhood asthma risk loci that relate to immune function have been identified by genome-wide association studies (GWAS), but the underlying mechanisms remain unknown. OBJECTIVE: Here, we examined whether perturbed innate immune responses mediate the association between known genetic risk variants and development of childhood asthma. METHODS: Peripheral blood mononuclear cells from 336 six-month-old infants from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000 ) cohort were stimulated in vitro with six different innate ligands (LPS, CpG, poly(I:C), R848, HDMAPP and aluminium hydroxide together with low levels of LPS) followed by quantification of 18 released cytokines and chemokines 40 h after the stimulations. The innate immune response profiles were decomposed by principal component (PC) analysis, and PC1-5 were used in mediation analyses of the effect of 25 known genetic risk variants on childhood asthma until age 7. RESULTS: The effects of two variants from the 17q21 locus (rs7216389, rs2305480) on asthma and exacerbation risk were significantly mediated by immune parameters induced in response to ligands mimicking intracellular colonization; bacterial DNA (CpG) and double-stranded viral RNA (poly(I:C)). The Th17 and innate lymphoid cell type 3-amplifying cytokine IL-23 was the most prominent cytokine involved. CONCLUSION: The 17q21 effect on childhood asthma and exacerbations was partly mediated by deregulation of IL-23 in response to intracellular microbial ligands, which may suggest ineffective clearance of intracellular pathogens in the lungs.


Assuntos
Asma/imunologia , Cromossomos Humanos Par 17/imunologia , Imunidade Inata/imunologia , Interleucina-23/imunologia , Células Th17/imunologia , Asma/genética , Cromossomos Humanos Par 17/genética , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imunidade Inata/genética , Lactente , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA