Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuropsychopharmacology ; 49(3): 584-592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735504

RESUMO

Major depressive disorder (MDD) is a serious psychiatric disorder that in extreme cases can lead to suicide. Evidence suggests that alterations in the kynurenine pathway (KP) contribute to the pathology of MDD. Activation of the KP leads to the formation of neuroactive metabolites, including kynurenic acid (KYNA) and quinolinic acid (QUIN). To test for changes in the KP, postmortem anterior cingulate cortex (ACC) was obtained from the National Institute of Health NeuroBioBank. Gene expression of KP enzymes and relevant neuroinflammatory markers were investigated via RT-qPCR (Fluidigm) and KP metabolites were measured using liquid chromatography-mass spectrometry in tissue from individuals with MDD (n = 44) and matched nonpsychiatric controls (n = 36). We report increased IL6 and IL1B mRNA in MDD. Subgroup analysis found that female MDD subjects had significantly decreased KYNA and a trend decrease in the KYNA/QUIN ratio compared to female controls. In addition, MDD subjects that died by suicide had significantly decreased KYNA in comparison to controls and MDD subjects that did not die by suicide, while subjects that did not die by suicide had increased KYAT2 mRNA, which we hypothesise may protect against a decrease in KYNA. Overall, we found sex- and suicide-specific alterations in the KP in the ACC in MDD. This is the first molecular evidence in the brain of subgroup specific changes in the KP in MDD, which not only suggests that treatments aimed at upregulation of the KYNA arm in the brain may be favourable for female MDD sufferers but also might assist managing suicidal behaviour.


Assuntos
Transtorno Depressivo Maior , Suicídio , Humanos , Feminino , Transtorno Depressivo Maior/metabolismo , Cinurenina , Giro do Cíngulo/metabolismo , Depressão , RNA Mensageiro/metabolismo , Ácido Cinurênico/metabolismo , Ácido Quinolínico
2.
J Psychiatr Res ; 160: 204-209, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848775

RESUMO

The glutamatergic system may be central to the neurobiology and treatment of major depressive disorder (MDD) and psychosis. Despite the success of N-methyl-D-aspartate receptor (NMDAR) antagonists for the treatment of MDD, little is known regarding the expression of these glutamate receptors in MDD. In this study we measured gene expression, via qRT-PCR, of the major NMDAR subunits, in the anterior cingulate cortex (ACC) in MDD subjects with and without psychosis, and non-psychiatric controls. Overall, GRIN2B mRNA was increased in both MDD with (+32%) and without psychosis (+40%) compared to controls along with a trend increase in GRIN1 mRNA in MDD overall (+24%). Furthermore, in MDD with psychosis there was a significant decrease in the GRIN2A:GRIN2B mRNA ratio (-19%). Collectively these results suggest dysfunction of the glutamatergic system at the gene expression level in the ACC in MDD. Increased GRIN2B mRNA in MDD, along with an altered GRIN2A:GRIN2B ratio in psychotic depression, suggests a disruption to NMDAR composition could be present in the ACC in MDD; this could lead to enhanced signalling via GluN2B-containing NMDARs and greater potential for glutamate excitotoxicity in the ACC in MDD. These results support future research into GluN2B antagonist-based treatments for MDD.


Assuntos
Transtorno Depressivo Maior , Receptores de N-Metil-D-Aspartato , Humanos , Depressão/psicologia , Transtorno Depressivo Maior/genética , Expressão Gênica , Giro do Cíngulo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Mensageiro/metabolismo
3.
J Psychiatr Res ; 147: 203-211, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063739

RESUMO

Evidence, largely obtained from peripheral studies, suggests that alterations in the kynurenine pathway contribute to the aetiology of depression and disorders involving psychosis. Stimulation of the kynurenine pathway leads to the formation of neuroactive metabolites, including kynurenic acid (predominantly in astrocytes) and quinolinic acid (predominantly in microglia), which are antagonists and agonists of the glutamate NMDA receptor, respectively. In this study, we measured gene expression via qRT-PCR of the main kynurenine pathway enzymes in the anterior cingulate cortex (ACC) in people with major depressive disorder and matched controls. In parallel, we tested for diagnostic differences in gene expression of relevant glial markers. We used total RNA isolated from the ACC from depression subjects with psychosis (n = 12) and without psychosis (n = 12), and non-psychiatric controls (n = 12) provided by the Stanley Medical Research Institute. In the ACC, KYAT1 (KAT I), AADAT (KAT II), and the astrocytic SLC1A2 (EAAT2) mRNAs, were significantly increased in depression, when combining those with and without psychosis. The increased KYAT1 and AADAT mRNA indicates that depression is associated with increased activation of the kynurenic acid arm of the kynurenine pathway in the ACC, suggesting an astrocyte response in depression. Considering EAAT2 and KATs increase astrocytic glutamate uptake and production of the NMDA receptor antagonist kynurenic acid, the observed increases of these markers may relate to changes in glutamatergic signalling in depression. These results suggest dysfunction of the kynurenine pathway in the brain in depression and point to the kynurenine pathway as a possible driver of glutamate dysfunction in depression.


Assuntos
Transtorno Depressivo Maior , Transtornos Psicóticos , Astrócitos/metabolismo , Depressão , Transtorno Depressivo Maior/metabolismo , Humanos , Ácido Cinurênico/metabolismo , Cinurenina
4.
Neurosci Biobehav Rev ; 127: 917-927, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029552

RESUMO

Major depression is a serious psychiatric disorder, occurring in up to 20 % of the population. Despite its devastating burden, the neurobiological changes associated with depression are not fully understood. A growing body of evidence suggests the kynurenine pathway is implicated in the pathophysiology of depression. In this review, we bring together the literature examining elements of the kynurenine pathway in depression and explore the implications for the pathophysiology and treatment of depression, while highlighting the gaps in the current knowledge. Current research indicates an increased potential for neurotoxic activity of the kynurenine pathway in peripheral blood samples but an increased activation of the putative neuroprotective arm in some brain regions in depression. The disconnect between these findings requires further investigation, with a greater research effort on elucidating the central effects of the kynurenine pathway in driving depression symptomology. Research investigating the benefits of targeting the kynurenine pathway centred on human brain findings and the heterogenous subtypes of depression will help guide the identification of effective drug targets in depression.


Assuntos
Transtorno Depressivo Maior , Cinurenina , Encéfalo , Depressão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA