Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Prod Rep ; 37(4): 488-514, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32048675

RESUMO

Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proteínas/metabolismo , Produtos Biológicos/classificação , Descoberta de Drogas/métodos , Enzimas/química , Enzimas/metabolismo , Humanos , Mapas de Interação de Proteínas , Proteínas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Bioorg Med Chem ; 21(17): 5107-17, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23876338

RESUMO

The present work describes the preparation of a novel series of compounds based on the structure of goniothalamin (1), a natural styryl lactone with known cytotoxic and antiproliferative activities against a variety of cancer cell lines. A focused library of 17 goniothalamin analogues displaying the 5-methyl-2,5-dihydrofuran-2-one motif were prepared, and their cytotoxicity evaluated. While the analogues bearing methoxy and/or hydroxy groups on the aromatic moiety usually were at least three times less potent than the lead compound (1), ortho and para-trifluoromethyl analogues 10 and 11 exhibited levels of cytotoxicity similar to goniothalamin (1) against most cancer cell lines evaluated. One could suggest that the electronic effect of the trifluoromethyl group activates the inhibitor's electrophilic site via reduction of the electron density of the α,ß-unsaturated ester oxygen atom. These results provide new information on the structure activity relationship of these α,ß-unsaturated styryl lactones, thereby further focusing the design of novel candidates.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Furanos/química , Pironas/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/síntese química , Furanos/toxicidade , Células HT29 , Humanos , Células K562 , Células MCF-7 , Pironas/síntese química , Pironas/toxicidade , Relação Estrutura-Atividade
3.
Front Chem ; 11: 1163486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035111

RESUMO

A short 3-step synthesis of the antiviral agent 7DMA is described herein. The nature of a major by-product formed during the key N-glycosylation of 6-chloro-7-deaza-7-iodopurine with perbenzoylated 2-methyl-ribose under Vorbrüggen conditions was also investigated. Spectroscopic analyses support that the solvent itself is converted into a nucleophilic species competing with the nucleobase and further reacting with the activated riboside in an unanticipated fashion. These findings call for a revision of reaction conditions when working with weakly reactive nucleobases in the presence of Lewis acids. 7DMA thus obtained was evaluated for its efficacy against an emerging flavivirus in vitro.

4.
Sci Rep ; 12(1): 18500, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323732

RESUMO

The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ligantes , Proteínas do Nucleocapsídeo/genética , RNA/metabolismo , Antivirais/farmacologia , Ligação Proteica
5.
Virulence ; 13(1): 1031-1048, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734825

RESUMO

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Células HEK293 , Humanos , Lipídeos , Camundongos , Pandemias , Qualidade de Vida , Células Vero , Replicação Viral
6.
ACS Infect Dis ; 7(8): 2455-2471, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34279922

RESUMO

Chagas disease, an infectious condition caused by Trypanosoma cruzi, lacks treatment with drugs with desired efficacy and safety profiles. To address this unmet medical need, a set of trypanocidal compounds were identified through a large multicenter phenotypic-screening initiative and assembled in the GSK Chagas Box. In the present work, we report the screening of the Chagas Box against T. cruzi malic enzymes (MEs) and the identification of three potent inhibitors of its cytosolic isoform (TcMEc). One of these compounds, TCMDC-143108 (1), came out as a nanomolar inhibitor of TcMEc, and 14 new derivatives were synthesized and tested for target inhibition and efficacy against the parasite. Moreover, we determined the crystallographic structures of TcMEc in complex with TCMDC-143108 (1) and six derivatives, revealing the allosteric inhibition site and the determinants of specificity. Our findings connect phenotypic hits from the Chagas Box to a relevant metabolic target in the parasite, providing data to foster new structure-activity guided hit optimization initiatives.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Sulfonamidas , Tripanossomicidas/farmacologia
7.
J Org Chem ; 75(2): 353-8, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20000660

RESUMO

An improved synthesis of the oxepinochromone ptaeroxylin is reported, together with the syntheses of the related natural products ptaeroxylinol and eranthin. Ptaeroxylin and ptaeroxylinol were obtained from the chromenone noreugenin by selective reaction of the 7-hydroxyl group, allylation of the 5-hydroxyl, followed by Claisen rearrangement under microwave conditions with concomitant deprotection of the 7-hydroxyl. Alkylation of the 7-hydroxyl with the appropriate allyl bromide provides a precursor for ring-closing metathesis to deliver the oxepinochromone ring system. Eranthin was obtained by a similar strategy involving Claisen rearrangement to transfer an allyl group from the C-7 hydroxyl of noreugenin to C-8 regioselectively.


Assuntos
Produtos Biológicos/síntese química , Cromonas/síntese química , Produtos Biológicos/química , Cromonas/química , Ciclização , Estrutura Molecular , Estereoisomerismo
8.
ACS Med Chem Lett ; 11(6): 1250-1256, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551008

RESUMO

Chagas disease is a parasitic infection affecting millions of people across Latin America, imposing a dramatic socioeconomic burden. Despite the availability of drugs, nifurtimox and benznidazole, lack of efficacy and incidence of side-effects prompt the identification of novel, efficient, and affordable drug candidates. To address this issue, one strategy could be probing the susceptibility of Trypanosoma parasites toward NADP-dependent enzyme inhibitors. Recently, steroids of the androstane group have been described as highly potent but nonselective inhibitors of parasitic glucose-6-phosphate dehydrogenase (G6PDH). In order to promote selectivity, we have synthesized and evaluated 26 steroid derivatives of epiandrosterone in enzymatic assays, whereby 17 compounds were shown to display moderate to high selectivity for T. cruzi over the human G6PDH. In addition, three compounds were effective in killing intracellular T. cruzi forms infecting rat cardiomyocytes. Altogether, this study provides new SAR data around G6PDH and further supports this target for treating Chagas disease.

9.
ACS Pharmacol Transl Sci ; 3(4): 737-748, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832874

RESUMO

For disorders of the skin, eyes, ears, and respiratory tract, topical drugs, delivered directly to the target organ, are a therapeutic option. Compared with systemic oral therapy, the benefits of topical treatments include a faster onset of action, circumventing the liver first pass drug metabolism, and reducing systemic side effects. Nevertheless, some systemic absorption still occurs for many topical agents resulting in systemic side effects. One way to prevent these would be to develop drugs that are instantly degraded upon entry into the bloodstream by serum esterases. Because topical ß-blockers are used in glaucoma and infantile hemeangioma and cause systemic side effects, the ß-adrenoceptor system was used to test this hypothesis. Purified liver esterase reduced the apparent affinity of esmolol, an ester-containing ß-blocker used in clinical emergencies, for the human ß-adrenoceptors in a concentration and time-dependent manner. However, purified serum esterase had no effect on esmolol. Novel ester-containing ß-blockers were synthesized and several were sensitive to both liver and serum esterases. Despite good in vitro affinity, one such compound, methyl 2-(3-chloro-4-(3-((2-(3-(3-chlorophenyl)ureido)ethyl)amino)-2-hydroxypropoxy)phenyl)acetate, had no effect on heart rate when injected intravenously into rats, even at 10 times the equipotent dose of esmolol and betaxolol that caused short and sustained reductions in heart rate, respectively. Thus, ester-based drugs, sensitive to serum esterases, offer a mechanism for developing topical agents that are truly devoid of systemic side effects. Furthermore, differential susceptibility to liver and serum esterases degradation may also allow the duration of systemic availability for other drugs to be fine-tuned.

10.
Org Biomol Chem ; 7(10): 2127-34, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19421451

RESUMO

A synthesis of the unusual ansa-bridged farnesyl hydroquinone derivative likonide B in racemic form is described. The natural product, also known as smenochromene D, was obtained from geranylacetone by a route in which the key steps are a regioselective microwave-mediated Claisen rearrangement of an aryl propargyl ether to deliver the chromene ring, and macrocyclization via an intramolecular Mitsunobu reaction. Subsequent HPLC on a chiral stationary phase gave the pure (+)- and (-)-enantiomers, that were studied by CD spectroscopy, thereby shedding some light on the true stereochemical nature of the two natural products (-)-smenochromene D and (+)-likonide B.


Assuntos
Produtos Biológicos/química , Hidroquinonas/síntese química , Micro-Ondas , Hidroquinonas/química , Estrutura Molecular , Estereoisomerismo
11.
Mol Cell Endocrinol ; 484: 1-14, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30703486

RESUMO

Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that modulate several biological processes. Traditionally, modulation of NRs has been focused on the development of ligands that recognize and bind to the ligand binding domain (LBD), resulting in activation or repression of transcription through the recruitment of coregulators. However, for more severe diseases, such as breast and prostate cancer, the conventional treatment addressing LBD modulation is not always successful, due to tumor resistance. To overcome these challenges and aiming to modulate NR activity by inhibiting the NR-DNA interaction, new studies focus on the development of molecules targeting alternative sites and domains on NRs. Here, we discuss two different approaches for this alternative NR modulation: one targeting the NR DNA binding domain (DBD); and the other targeting the DNA sites recognized by NRs. Our aim is to present the challenges and perspectives for developing specific inhibitors for each purpose, alongside with already reported examples.


Assuntos
DNA/química , DNA/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sítios de Ligação/efeitos dos fármacos , Humanos , Inativação Metabólica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
12.
Artigo em Português | Arca: Repositório institucional da Fiocruz | ID: arc-51653

RESUMO

A descoberta de fármacos a partir de produtos naturais vivencia uma nova era graças ao uso de tecnologias de ponta e abordagens integradas para superar as dificuldades inerentes à pesquisa com produtos naturais. Estes são substâncias químicas altamente complexas e inovadoras produzidas pela biota, em especial organismos sésseis como plantas e micro-organismos, e representam a principal fonte de inspiração de novos fármacos. Resultante do reavivado interesse na descoberta de medicamentos à base de produtos naturais, novas abordagens para a identificação, caracterização, e reabastecimento de produtos naturais estão sendo desenvolvidas, que podem endereçar alguns dos desafios relacionados ao desenvolvimento de fármacos inspirados em moléculas da biodiversidade. Almeja-se a capacidade de detecção e caracterização de novos produtos naturais bioativos, concomitantemente à redução dos custos e tempo para obtenção destas moléculas. Para isto, é necessário inovar nos processos e nas tecnologias aplicadas à descoberta de fármacos a partir de produtos naturais. A abordagem Molecular Power House (MPH) apresentada neste trabalho faz uso de tecnologias integradas como uma forma de superar gargalos clássicos da pesquisa com produtos naturais de plantas, alinhada ao acesso à maior biodiversidade do planeta, posicionando o Brasil no cenário mundial de descoberta de fármacos inovadores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA