Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 230(3): 904-923, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570772

RESUMO

Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.


Assuntos
Secas , Ecossistema , Folhas de Planta , Floresta Úmida , Árvores , Água
2.
New Phytol ; 223(3): 1253-1266, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077396

RESUMO

Reducing uncertainties in the response of tropical forests to global change requires understanding how intra- and interannual climatic variability selects for different species, community functional composition and ecosystem functioning, so that the response to climatic events of differing frequency and severity can be predicted. Here we present an extensive dataset of hydraulic traits of dominant species in two tropical Amazon forests with contrasting precipitation regimes - low seasonality forest (LSF) and high seasonality forest (HSF) - and relate them to community and ecosystem response to the El Niño-Southern Oscillation (ENSO) of 2015. Hydraulic traits indicated higher drought tolerance in the HSF than in the LSF. Despite more intense drought and lower plant water potentials in HSF during the 2015-ENSO, greater xylem embolism resistance maintained similar hydraulic safety margin as in LSF. This likely explains how ecosystem-scale whole-forest canopy conductance at HSF maintained a similar response to atmospheric drought as at LSF, despite their water transport systems operating at different water potentials. Our results indicate that contrasting precipitation regimes (at seasonal and interannual time scales) select for assemblies of hydraulic traits and taxa at the community level, which may have a significant role in modulating forest drought response at ecosystem scales.


Assuntos
Secas , El Niño Oscilação Sul , Florestas , Água , Folhas de Planta/fisiologia , Probabilidade , Chuva , Estações do Ano , Especificidade da Espécie
4.
Tree Physiol ; 43(9): 1514-1532, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209136

RESUMO

Tropical montane cloud forests (TMCFs) are expected to experience more frequent and prolonged droughts over the coming century, yet understanding of TCMF tree responses to moisture stress remains weak compared with the lowland tropics. We simulated a severe drought in a throughfall reduction experiment (TFR) for 2 years in a Peruvian TCMF and evaluated the physiological responses of several dominant species (Clusia flaviflora Engl., Weinmannia bangii (Rusby) Engl., Weinmannia crassifolia Ruiz & Pav. and Prunus integrifolia (C. Presl) Walp). Measurements were taken of (i) sap flow; (ii) diurnal cycles of stem shrinkage, stem moisture variation and water-use; and (iii) intrinsic water-use efficiency (iWUE) estimated from foliar δ13C. In W. bangii, we used dendrometers and volumetric water content (VWC) sensors to quantify daily cycles of stem water storage. In 2 years of sap flow (Js) data, we found a threshold response of water use to vapor pressure deficit vapor pressure deficit (VPD) > 1.07 kPa independent of treatment, though control trees used more soil water than the treatment trees. The daily decline in water use in the TFR trees was associated with a strong reduction in both morning and afternoon Js rates at a given VPD. Soil moisture also affected the hysteresis strength between Js and VPD. Reduced hysteresis under moisture stress implies that TMCFs are strongly dependent on shallow soil water. Additionally, we suggest that hysteresis can serve as a sensitive indicator of environmental constraints on plant function. Finally, 6 months into the experiment, the TFR treatment significantly increased iWUE in all study species. Our results highlight the conservative behavior of TMCF tree water use under severe soil drought and elucidate physiological thresholds related to VPD and its interaction with soil moisture. The observed strongly isohydric response likely incurs a cost to the carbon balance of the tree and reduces overall ecosystem carbon uptake.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Secas , Água/fisiologia , Florestas , Carbono , Solo
5.
Sci Total Environ ; 773: 145066, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582326

RESUMO

Biological nitrogen fixation is a key process for the maintenance of natural ecosystems productivity. In tropical forests, the contribution of asymbiotic nitrogen fixation (ANF) to the nitrogen (N) input has been underestimated, even though few studies have shown that ANF may be as important as symbiotic nitrogen fixation in such environments. The inputs and abiotic modulators of ANF in the Amazon forest are not completely understood. Here, we determined ANF rates and estimated the N inputs from ANF in the phyllosphere, litter and rhizospheric soil of nine tree species in the Amazon forest over time, including an extreme drought period induced by the El Niño-Southern Oscillation. Our data showed that ANF rates in the phyllosphere were 2.8- and 17.6-fold higher than in the litter and rhizospheric soil, respectively, and was highly dependent on tree taxon. Sampling time was the major factor modulating ANF in all forest compartments. At the driest period, ANF rates were approximately 1.8-fold and 13.1-fold higher than at periods with higher rainfall, before and after the extreme drought period, respectively. Tree species was a key modulator of ANF in the phyllosphere, as well as N and Vanadium concentrations. Carbon, molybdenum and vanadium concentrations were significant modulators of ANF in the litter. Based on ANF rates at the three sampling times, we estimated that the N input in the Amazon forest through ANF in the phyllosphere, litter and rhizospheric soil, was between 0.459 and 0.714 kg N ha-1 yr-1. Our results highlight the importance of ANF in the phyllosphere for the N input in the Amazon forest, and suggest that changes in the patterns of ANF driven by large scale climatic events may impact total N inputs and likely alter forest productivity.


Assuntos
Ecossistema , Fixação de Nitrogênio , Florestas , Nitrogênio , Solo , Árvores
6.
Nat Commun ; 12(1): 2310, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875648

RESUMO

Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change.


Assuntos
Carboidratos/análise , Secas , Florestas , Estações do Ano , Árvores/metabolismo , Água/metabolismo , Bolívia , Brasil , Metabolismo dos Carboidratos , Mudança Climática , Geografia , Peru , Folhas de Planta/metabolismo , Açúcares/metabolismo , Árvores/classificação , Clima Tropical
7.
Artigo em Inglês | MEDLINE | ID: mdl-30297479

RESUMO

Tree transpiration is important in the recycling of precipitation in the Amazon and might be negatively affected by El Niño-Southern Oscillation (ENSO)-induced droughts. To investigate the relative importance of soil moisture deficits versus increasing atmospheric demand (VPD) and determine if these drivers exert different controls over tree transpiration during the wet season versus the dry season (DS), we conducted sap flow measurements in a primary lowland tropical forest in eastern Amazon during the most extreme ENSO-induced drought (2015/2016) recorded in the Amazon. We also assessed whether trees occupying different canopy strata contribute equally to the overall stand transpiration (Tstand). Canopy trees were the primary source of Tstand However, subcanopy trees are still important as they transpired an amount similar to other biomes around the globe. Tree water use was higher during the DS, indicating that during extreme drought trees did not reduce transpiration in response to low soil moisture. Photosynthetically active radiation and VPD exerted an overriding effect on water use patterns relative to soil moisture during extreme drought, indicating that light and atmospheric constraints play a critical role in controlling ecosystem fluxes of water. Our study highlights the importance of canopy and subcanopy trees to the regional water balance and highlights the resilience to droughts that these trees show during an extreme ENSO event.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Secas , El Niño Oscilação Sul , Florestas , Transpiração Vegetal , Árvores/fisiologia , Brasil , Estações do Ano , Solo/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA