Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(8): e202303335, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37971151

RESUMO

The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.


Assuntos
Sistema Enzimático do Citocromo P-450 , Oxigenases de Função Mista , Parabenos , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise
2.
Arch Biochem Biophys ; 754: 109950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430969

RESUMO

The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.


Assuntos
Mycobacterium marinum , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Secundária de Proteína , Macrolídeos/química , Macrolídeos/metabolismo , Heme/química , Cristalografia por Raios X
3.
Biochemistry ; 62(4): 899-911, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36745518

RESUMO

Polyamines and polyamine-containing metabolites are involved in many cellular processes related to bacterial cell growth and survival. In Escherichia coli, the bifunctional enzyme glutathionylspermidine synthetase/amidase (GspSA) controls the production of glutathionylspermidine, which has a protective role against oxidative stress. E. coli also encodes two enzymes with homology to the synthetase domain of GspSA, YgiC, and YjfC; however, these do not catalyze the formation of glutathionylspermidine, and their catalytic function remained unknown. Here, we detail the structural and functional characterization of YgiC and YjfC. Using X-ray crystallography, the high-resolution crystal structures of YgiC and YjfC were obtained. This revealed that YgiC and YjfC possess multiple substitutions in key residues required for binding of glutathione in GspSA. Despite this difference, these enzymes share a similar active site structure to GspSA, suggesting that they catalyze the formation of an alternate peptide─spermidine conjugate. As the physiological substrates of YgiC and YjfC are unknown, this was probed using the peptide triglycine as a model substrate. A combination of enzyme activity assays and mass spectrometry revealed that YgiC and YjfC can function as peptide-spermidine ligases, forming a triglycine-spermidine conjugate. For both enzymes, conjugate formation was only observed in the presence of spermidine, but not other common polyamines, supporting that spermidine or a spermidine derivative is the physiological substrate. Importantly, since YgiC and YjfC are widely distributed in Gram-negative bacterial species, this suggests that these enzymes function in a conserved cellular process, representing a currently unknown aspect of bacterial polyamine metabolism.


Assuntos
Escherichia coli , Espermidina , Domínio Catalítico , Escherichia coli/metabolismo , Ligases/metabolismo , Poliaminas/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
J Biol Chem ; 298(10): 102392, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988643

RESUMO

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.


Assuntos
Proteínas de Bactérias , Cisteína , Metionina , Peptídeo Sintases , Staphylococcus aureus , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipeptídeos/biossíntese , Metionina/química , Metionina/metabolismo , Filogenia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Cisteína/química , Cisteína/metabolismo
5.
J Am Chem Soc ; 145(16): 9207-9222, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042073

RESUMO

The cytochrome P450 (CYP) superfamily of heme monooxygenases has demonstrated ability to facilitate hydroxylation, desaturation, sulfoxidation, epoxidation, heteroatom dealkylation, and carbon-carbon bond formation and cleavage (lyase) reactions. Seeking to study the carbon-carbon cleavage reaction of α-hydroxy ketones in mechanistic detail using a microbial P450, we synthesized α-hydroxy ketone probes based on the physiological substrate for a well-characterized benzoic acid metabolizing P450, CYP199A4. After observing low activity with wild-type CYP199A4, subsequent assays with an F182L mutant demonstrated enzyme-dependent C-C bond cleavage toward one of the α-hydroxy ketones. This C-C cleavage reaction was subject to an inverse kinetic solvent isotope effect analogous to that observed in the lyase activity of the human P450 CYP17A1, suggesting the involvement of a species earlier than Compound I in the catalytic cycle. Co-crystallization of F182L-CYP199A4 with this α-hydroxy ketone showed that the substrate bound in the active site with a preference for the (S)-enantiomer in a position which could mimic the topology of the lyase reaction in CYP17A1. Molecular dynamics simulations with an oxy-ferrous model of CYP199A4 revealed a displacement of the substrate to allow for oxygen binding and the formation of the lyase transition state proposed for CYP17A1. This demonstration that a correctly positioned α-hydroxy ketone substrate can realize lyase activity with an unusual inverse solvent isotope effect in an engineered microbial system opens the door for further detailed biophysical and structural characterization of CYP catalytic intermediates.


Assuntos
Liases , Humanos , Domínio Catalítico , Catálise , Simulação de Dinâmica Molecular
6.
Chemistry ; 29(50): e202301371, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338048

RESUMO

The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,ß-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.


Assuntos
Ácido Benzoico , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Óxidos , Tiofenos
7.
Arch Biochem Biophys ; 737: 109554, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842492

RESUMO

The CYP124 family of cytochrome P450 enzymes, as exemplified by CYP124A1 from Mycobacterium tuberculosis, is involved in the metabolism of methyl branched lipids and cholesterol derivatives. The equivalent enzyme from Mycobacterium marinum was investigated to compare the degree of functional conservation between members of this CYP family from closely related bacteria. We compared substrate binding of each CYP124 enzyme using UV-vis spectroscopy and the catalytic oxidation of methyl branched lipids, terpenes and cholesterol derivatives was investigated. The CYP124 enzyme from M. tuberculosis displayed a larger shift to the ferric high-spin state on binding cholesterol derivatives compared to the equivalent enzyme from M. marinum. The biggest difference was observed with cholesteryl sulfate which induced distinct UV-vis spectra in each CYP124 enzyme. The selectivity for oxidation at the ω-carbon of a branched chain was maintained for all substrates, except cholesteryl sulfate which was not oxidized by either enzyme. The CYP124A1 enzyme from M. marinum, in combination with farnesol and farnesyl acetate, was structurally characterized by X-ray crystallography. These ligand-bound structures of the CYP124 enzyme revealed that the polar component of the substrates bound in a different manner to that of phytanic acid in the structure of CYP124A1 from M. tuberculosis. However, closer to the heme the structures were similar providing an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation. The work here demonstrates that there were differences in the biochemistry of the CYP124 enzymes from these closely related bacteria.


Assuntos
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium marinum/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Colesterol/metabolismo
8.
Bioorg Med Chem ; 96: 117509, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948922

RESUMO

d-Alanine-d-alanine ligase (Ddl) catalyses the ATP-dependent formation of d-Ala-d-Ala, a critical component in bacterial cell wall biosynthesis and is a validated target for new antimicrobial agents. Here, we describe the structure-guided design, synthesis, and evaluation of ATP-competitive N-acyl-substituted sulfamides 27-36, 42, 46, 47 as inhibitors of Staphylococcus aureus Ddl (SaDdl). A crystal structure of SaDdl complexed with ATP and d-Ala-d-Ala (PDB: 7U9K) identified ATP-mimetic 8 as an initial scaffold for further inhibitor design. Evaluation of 8 in SaDdl enzyme inhibition assays revealed the ability to reduce enzyme activity to 72 ± 8 % (IC50 = 1.6 mM). The sulfamide linker of 8 was extended with 2-(4-methoxyphenyl)ethanol to give 29, to investigate further interactions with the d-Ala pocket of SaDdl, as predicted by molecular docking. This compound reduced enzyme activity to 89 ± 1 %, with replacement of the 4-methoxyphenyl group in 29 with alternative phenyl substituents (27, 28, 31-33, 35, 36) failing to significantly improve on this (80-89 % remaining enzyme activity). Exchanging these phenyl substituents with selected heterocycles (42, 46, 47) did improve activity, with the most active compound (42) reducing SaDdl activity to 70 ± 1 % (IC50 = 1.7 mM), which compares favourably to the FDA-approved inhibitor d-cycloserine (DCS) (IC50 = 0.1 mM). To the best of our knowledge, this is the first reported study of bisubstrate SaDdl inhibitors.


Assuntos
Alanina , Peptídeo Sintases , Simulação de Acoplamento Molecular , Peptídeo Sintases/química , Trifosfato de Adenosina/química
9.
Biochem J ; 479(13): 1441-1454, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35730699

RESUMO

Single-minded 2 (SIM2) is a neuron-enriched basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH/PAS) transcription factor essential for mammalian survival. SIM2 is located within the Down syndrome critical region (DSCR) of chromosome 21, and manipulation in mouse models suggests Sim2 may play a role in brain development and function. During the screening of a clinical exome sequencing database, nine SIM2 non-synonymous mutations were found which were subsequently investigated for impaired function using cell-based reporter gene assays. Many of these human variants attenuated abilities to activate transcription and were further characterized to determine the mechanisms underpinning their deficiencies. These included impaired partner protein dimerization, reduced DNA binding, and reduced expression and nuclear localization. This study highlighted several SIM2 variants found in patients with disabilities and validated a candidate set as potentially contributing to pathology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Síndrome de Down , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Síndrome de Down/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos , Fenótipo , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 297(3): 101030, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339734

RESUMO

A promising approach for treating type 2 diabetes mellitus (T2DM) is to target the Peroxisome Proliferator-Activated Receptor γ (PPARγ) transcription factor, which regulates the expression of proteins critical for T2DM. Mechanisms involved in PPARγ signaling are poorly understood, yet globally increasing T2DM prevalence demands improvements in drug design. Synthetic, nonactivating PPARγ ligands can abolish the phosphorylation of PPARγ at Ser273, a posttranslational modification correlated with obesity and insulin resistance. It is not understood how these ligands prevent phosphorylation, and the lack of experimental mechanistic information can be attributed to previous ambiguity in the field as well as to limitations in experimental approaches; in silico modeling currently provides the only insight into how ligands block Ser273 phosphorylation. The future availability of experimental evidence is critical for clarifying the mechanism by which ligands prevent phosphorylation and should be the priority of future T2DM-focused research. Following this, the properties of ligands that enable them to block phosphorylation can be improved upon to generate ligands tailored for blocking phosphorylation and therefore restoring insulin sensitivity. This would represent a significant step forward for treating T2DM. This review summarizes current knowledge of the roles of PPARγ in T2DM as well as the effects of synthetic ligands on the modulation of these roles. We hypothesize potential factors that contribute to the reduction in recent developments and summarize what has currently been done to shed light on this critical field of research.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , PPAR gama/antagonistas & inibidores , Humanos , Resistência à Insulina , Ligantes , PPAR gama/química , PPAR gama/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Serina/metabolismo
11.
J Biol Chem ; 296: 100773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984330

RESUMO

The human sliding clamp, Proliferating Cell Nuclear Antigen (hPCNA), interacts with over 200 proteins through a conserved binding motif, the PIP-box, to orchestrate DNA replication and repair. It is not clear how changes to the features of a PIP-box modulate protein binding and thus how they fine-tune downstream processes. Here, we present a systematic study of each position within the PIP-box to reveal how hPCNA-interacting peptides bind with drastically varied affinities. We synthesized a series of 27 peptides derived from the native protein p21 with small PIP-box modifications and another series of 19 peptides containing PIP-box binding motifs from other proteins. The hPCNA-binding affinity of all peptides, characterized as KD values determined by surface plasmon resonance, spanned a 4000-fold range, from 1.83 nM to 7.59 µM. The hPCNA-bound peptide structures determined by X-ray crystallography and modeled computationally revealed intermolecular and intramolecular interaction networks that correlate with high hPCNA affinity. These data informed rational design of three new PIP-box sequences, testing of which revealed the highest affinity hPCNA-binding partner to date, with a KD value of 1.12 nM, from a peptide with PIP-box QTRITEYF. This work showcases the sequence-specific nuances within the PIP-box that are responsible for high-affinity hPCNA binding, which underpins our understanding of how nature tunes hPCNA affinity to regulate DNA replication and repair processes. In addition, these insights will be useful to future design of hPCNA inhibitors.


Assuntos
Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo
12.
Proteins ; 90(8): 1509-1520, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35247004

RESUMO

The metabolic enzyme, enolase, plays a crucial role in the cytoplasm where it maintains cellular energy production within the process of glycolysis. The main role of enolase in glycolysis is to convert 2-phosphoglycerate to phosphoenolpyruvate; however, enolase can fulfill roles that deviate from this function. In pathogenic bacteria and fungi, enolase is also located on the cell surface where it functions as a virulence factor. Surface-expressed enolase is a receptor for human plasma proteins, including plasminogen, and this interaction facilitates nutrient acquisition and tissue invasion. A novel approach to developing antifungal drugs is to inhibit the formation of this complex. To better understand the structure of enolase and the interactions that may govern complex formation, we have solved the first X-ray crystal structure of enolase from Aspergillus fumigatus (2.0 Å) and have shown that it preferentially adopts a dimeric quaternary structure using native mass spectrometry. Two additional X-ray crystal structures of A. fumigatus enolase bound to the endogenous substrate 2-phosphoglycerate and product phosphoenolpyruvate were determined and kinetic characterization was carried out to better understand the details of its canonical function. From these data, we have produced a model of the A. fumigatus enolase and human plasminogen complex to provide structural insights into the mechanisms of virulence and aid future development of small molecules or peptidomimetics for antifungal drug design.


Assuntos
Aspergillus fumigatus , Fosfopiruvato Hidratase , Antifúngicos , Humanos , Modelos Estruturais , Fosfoenolpiruvato/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Ligação Proteica
13.
Chemistry ; 28(72): e202202428, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36169207

RESUMO

Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C-H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2 O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2 O2 complex which would be more abundant in the peroxide-driven reactions.


Assuntos
Compostos Férricos , Oxidantes , Oxidantes/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Catálise
14.
Chemistry ; 28(67): e202201895, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36043399

RESUMO

The cytochrome P450 (CYP) family of heme monooxygenases catalyse the selective oxidation of C-H bonds under ambient conditions. The CYP199A4 enzyme from Rhodopseudomonas palustris catalyses aliphatic oxidation of 4-cyclohexylbenzoic acid but not the aromatic oxidation of 4-phenylbenzoic acid, due to the distinct mechanisms of aliphatic and aromatic oxidation. The aromatic substrates 4-benzyl-, 4-phenoxy- and 4-benzoyl-benzoic acid and methoxy-substituted phenylbenzoic acids were assessed to see if they could achieve an orientation more amenable to aromatic oxidation. CYP199A4 could catalyse the efficient benzylic oxidation of 4-benzylbenzoic acid. The methoxy-substituted phenylbenzoic acids were oxidatively demethylated with low activity. However, no aromatic oxidation was observed with any of these substrates. Crystal structures of CYP199A4 with 4-(3'-methoxyphenyl)benzoic acid demonstrated that the substrate binding mode was like that of 4-phenylbenzoic acid. 4-Phenoxy- and 4-benzoyl-benzoic acid bound with the ether or ketone oxygen atom hydrogen-bonded to the heme aqua ligand. We also investigated whether the substitution of phenylalanine residues in the active site could permit aromatic hydroxylation. Mutagenesis of the F298 residue to a valine did not significantly alter the substrate binding position or enable the aromatic oxidation of 4-phenylbenzoic acid; however the F182L mutant was able to catalyse 4-phenylbenzoic acid oxidation generating 2'-hydroxy-, 3'-hydroxy- and 4'-hydroxy metabolites in a 83 : 9 : 8 ratio, respectively. Molecular dynamics simulations, in which the distance and angle of attack were considered, demonstrated that in the F182L variant, in contrast to the wild-type enzyme, the phenyl ring of 4-phenylbenzoic acid attained a productive geometry for aromatic oxidation to occur.


Assuntos
Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , Hidroxilação , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Heme/química , Oxirredução , Benzoatos/química
15.
Inorg Chem ; 61(1): 236-245, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910500

RESUMO

The cytochrome P450 (CYP) superfamily of heme monooxygenases is involved in a range of important chemical biotransformations across nature. Azole-containing molecules have been developed as drugs that bind to the heme center of these enzymes, inhibiting their function. The optical spectrum of CYP enzymes after the addition of these inhibitors is used to assess how the molecules bind. Here we use the bacterial CYP199A4 enzyme, from Rhodopseudomonas palustris HaA2, to compare how imidazolyl and triazolyl inhibitors bind to ferric and ferrous heme. 4-(Imidazol-1-yl)benzoic acid induced a red shift in the Soret wavelength (424 nm) in the ferric enzyme along with an increase and a decrease in the intensities of the δ and α bands, respectively. 4-(1H-1,2,4-Triazol-1-yl)benzoic acid binds to CYP199A4 with a 10-fold lower affinity and induces a smaller red shift in the Soret band. The crystal structures of CYP199A4 with these two inhibitors confirmed that these differences in the optical spectra were due to coordination of the imidazolyl ligand to the ferric Fe, but the triazolyl inhibitor interacts with, rather than displaces, the ferric aqua ligand. Additional water molecules were present in the active site of 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound CYP199A4. The space required to accommodate these additional water molecules in the active site necessitates changes in the position of the hydrophobic phenylalanine 298 residue. Upon reduction of the heme, the imidazole-based inhibitor Fe-N ligation was not retained. A 5-coordinate heme was also the predominant species in 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound ferrous CYP199A4, but there was an obvious shoulder at 447 nm indicative of some degree of Fe-N coordination. Rather than inhibit CYP199A4, 4-(imidazol-1-yl)benzoic acid was a substrate and was oxidized to generate a metabolite derived from ring opening of the imidazolyl ring: 4-[[2-(formylamino)acetyl]amino]benzoic acid.


Assuntos
Sistema Enzimático do Citocromo P-450
16.
Cell Mol Life Sci ; 78(8): 4035-4052, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33834258

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Mutação Puntual , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Neoplasias/metabolismo , Proteoma/metabolismo , Proteômica , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais
17.
Biochem J ; 478(15): 3047-3062, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34338286

RESUMO

Activation of enzymes by monovalent cations (M+) is a widespread phenomenon in biology. Despite this, there are few structure-based studies describing the underlying molecular details. Thiolases are a ubiquitous and highly conserved family of enzymes containing both K+-activated and K+-independent members. Guided by structures of naturally occurring K+-activated thiolases, we have used a structure-based approach to engineer K+-activation into a K+-independent thiolase. To our knowledge, this is the first demonstration of engineering K+-activation into an enzyme, showing the malleability of proteins to accommodate M+ ions as allosteric regulators. We show that a few protein structural features encode K+-activation in this class of enzyme. Specifically, two residues near the substrate-binding site are sufficient for K+-activation: A tyrosine residue is required to complete the K+ coordination sphere, and a glutamate residue provides a compensating charge for the bound K+ ion. Further to these, a distal residue is important for positioning a K+-coordinating water molecule that forms a direct hydrogen bond to the substrate. The stability of a cation-π interaction between a positively charged residue and the substrate is determined by the conformation of the loop surrounding the substrate-binding site. Our results suggest that this cation-π interaction effectively overrides K+-activation, and is, therefore, destabilised in K+-activated thiolases. Evolutionary conservation of these amino acids provides a promising signature sequence for predicting K+-activation in thiolases. Together, our structural, biochemical and bioinformatic work provide important mechanistic insights into how enzymes can be allosterically activated by M+ ions.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Cátions Monovalentes/metabolismo , Ativação Enzimática , Potássio/metabolismo , Zoogloea/isolamento & purificação , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cátions Monovalentes/química , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutação , Potássio/química , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica , Especificidade por Substrato , Zoogloea/enzimologia , Zoogloea/genética
18.
Trends Biochem Sci ; 42(5): 383-394, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28268045

RESUMO

Protein biotinylation is a key post-translational modification found throughout the living world. The covalent attachment of a biotin cofactor onto specific metabolic enzymes is essential for their activity. This modification is distinctive, in that it is carried out by a single enzyme: biotin protein ligase (BPL), an enzyme that is able to biotinylate multiple target substrates without aberrant-off target biotinylation. BPL achieves this target selectivity by recognizing a sequence motif in the context of a highly conserved tertiary structure. One structural class of BPLs has developed an additional 'substrate verification' mechanism to further enable appropriate protein selection. This is crucial for the precise and selective biotinylation required for efficient biotin management, especially in organisms that are auxotrophic for biotin.


Assuntos
Biotina/metabolismo , Biotinilação , Ligases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
19.
J Biol Chem ; 295(23): 7894-7904, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32335509

RESUMO

The ATP-grasp superfamily of enzymes shares an atypical nucleotide-binding site known as the ATP-grasp fold. These enzymes are involved in many biological pathways in all domains of life. One ATP-grasp enzyme, d-alanine-d-alanine ligase (Ddl), catalyzes ATP-dependent formation of the d-alanyl-d-alanine dipeptide essential for bacterial cell wall biosynthesis and is therefore an important antibiotic drug target. Ddl is activated by the monovalent cation (MVC) K+, but despite its clinical relevance and decades of research, how this activation occurs has not been elucidated. We demonstrate here that activating MVCs bind adjacent to the active site of Ddl from Thermus thermophilus and used a combined biochemical and structural approach to characterize MVC activation. We found that TtDdl is a type II MVC-activated enzyme, retaining activity in the absence of MVCs. However, the efficiency of TtDdl increased ∼20-fold in the presence of activating MVCs, and it was maximally activated by K+ and Rb+ ions. A strict dependence on ionic radius of the MVC was observed, with Li+ and Na+ providing little to no TtDdl activation. To understand the mechanism of MVC activation, we solved crystal structures of TtDdl representing distinct catalytic stages in complex with K+, Rb+, or Cs+ Comparison of these structures with apo TtDdl revealed no evident conformational change on MVC binding. Of note, the identified MVC binding site is structurally conserved within the ATP-grasp superfamily. We propose that MVCs activate Ddl by altering the charge distribution of its active site. These findings provide insight into the catalytic mechanism of ATP-grasp enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Metais Alcalinos/metabolismo , Peptídeo Sintases/metabolismo , Trifosfato de Adenosina/química , Biocatálise , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Metais Alcalinos/química , Modelos Moleculares , Peptídeo Sintases/química , Thermus thermophilus/enzimologia
20.
Chembiochem ; 22(17): 2711-2720, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34107164

RESUMO

An i-i+4 or i-i+3 bimane-containing linker was introduced into a peptide known to target Estrogen Receptor alpha (ERα), in order to stabilise an α-helical geometry. These macrocycles were studied by CD and NMR to reveal the i-i+4 constrained peptide adopts a 310 -helical structure in solution, and an α-helical conformation on interaction with the ERα coactivator recruitment surface in silico. An acyclic bimane-modified peptide is also helical, when it includes a tryptophan or tyrosine residue; but is significantly less helical with a phenylalanine or alanine residue, which indicates such a bimane modification influences peptide structure in a sequence dependent manner. The fluorescence intensity of the bimane appears influenced by peptide conformation, where helical peptides displayed a fluorescence increase when TFE was added to phosphate buffer, compared to a decrease for less helical peptides. This study presents the bimane as a useful modification to influence peptide structure as an acyclic peptide modification, or as a side-chain constraint to give a macrocycle.


Assuntos
Cisteína/química , Peptídeos/química , Sequência de Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Dicroísmo Circular , Receptor alfa de Estrogênio/química , Espectroscopia de Ressonância Magnética , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA