Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2285-2288, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691700

RESUMO

We present experiments on reservoir computing (RC) using a network of vertical-cavity surface-emitting lasers (VCSELs) that we diffractively couple via an external cavity. Our optical reservoir computer consists of 24 physical VCSEL nodes. We evaluate the system's memory and solve the 2-bit XOR task and the 3-bit header recognition (HR) task with bit error ratios (BERs) below 1% and the 2-bit digital-to-analog conversion (DAC) task with a root mean square error (RMSE) of 0.067.

2.
Opt Express ; 31(16): 25881-25888, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710462

RESUMO

We introduce what we believe to be a novel method to perform linear optical random projections without the need for holography. Our method consists of a computationally trivial combination of multiple intensity measurements to mitigate the information loss usually associated with the absolute-square non-linearity imposed by optical intensity measurements. Both experimental and numerical findings demonstrate that the resulting matrix consists of real-valued, independent, and identically distributed (i.i.d.) Gaussian random entries. Our optical setup is simple and robust, as it does not require interference between two beams. We demonstrate the practical applicability of our method by performing dimensionality reduction on high-dimensional data, a common task in randomized numerical linear algebra with relevant applications in machine learning.

3.
Opt Express ; 31(5): 8704-8713, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859980

RESUMO

Networks of semiconductor lasers are the foundation of numerous applications and fundamental investigations in nonlinear dynamics, material processing, lighting, and information processing. However, making the usually narrowband semiconductor lasers within the network interact requires both high spectral homogeneity and a fitting coupling concept. Here, we report how we use diffractive optics in an external cavity to experimentally couple vertical-cavity surface-emitting lasers (VCSELs) in a 5×5 array. Out of the 25 lasers, we succeed to spectrally align 22, all of which we lock simultaneously to an external drive laser. Furthermore, we show the considerable coupling interactions between the lasers of the array. This way, we present the largest network of optically coupled semiconductor lasers reported so far and the first detailed characterization of such a diffractively coupled system. Due to the high homogeneity of the lasers, the strong interaction between them, and the scalability of the coupling approach, our VCSEL network is a promising platform for experimental investigations of complex systems, and it has direct applications as a photonic neural network.

4.
Opt Express ; 31(12): 20256-20264, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381424

RESUMO

We experimentally demonstrate, based on a generic concept for creating 1-to-M couplers, single-mode 3D optical splitters leveraging adiabatic power transfer towards up to 4 output ports. We use the CMOS compatible additive (3+1)D flash-two-photon polymerization (TPP) printing for fast and scalable fabrication. Optical coupling losses of our splitters are reduced below our measurement sensitivity of 0.06 dB by tailoring the coupling and waveguides geometry, and we demonstrate almost octave-spanning broadband functionality from 520 nm to 980 nm during which losses remain below 2 dB. Finally, based on a fractal, hence self-similar topology of cascaded splitters, we show the efficient scalability of optical interconnects up to 16 single-mode outputs with optical coupling losses of only 1 dB.

5.
Nanotechnology ; 34(32)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37105145

RESUMO

Today, continued miniaturization in electronic integrated circuits (ICs) appears to have reached its fundamental limit at ∼2 nm feature-sizes, from originally ∼1 cm. At the same time, energy consumption due to communication becomes the dominant limitation in high performance electronic ICs for computing, and modern computing concepts such neural networks further amplify the challenge. Communication based on co-integrated photonic circuits is a promising strategy to address the second. As feature size has leveled out, adding a third dimension to the predominantly two-dimensional ICs appears a promising future strategy for further IC architecture improvement. Crucial for efficient electronic-photonic co-integration is complementary metal-oxide-semiconductor (CMOS) compatibility of the associated photonic integration fabrication process. Here, we review our latest results obtained in the FEMTO-ST RENATECH facilities on using additive photo-induced polymerization of a standard photo-resin for truly three-dimensional (3D) photonic integration according to these principles. Based on one- and two-photon polymerization (TPP) and combined with direct-laser writing, we 3D-printed air- and polymer-cladded photonic waveguides. An important application of such circuits are the interconnects of optical neural networks, where 3D integration enables scalability in terms of network size versus its geometric dimensions. In particular viaflash-TPP, a fabrication process combining blanket one- and high-resolution TPP, we demonstrated polymer-cladded step-index waveguides with up to 6 mm length, low insertion (∼0.26 dB) and propagation (∼1.3 dB mm-1) losses, realized broadband and low loss (∼0.06 dB splitting losses) adiabatic 1 to M couplers as well as tightly confining air-cladded waveguides for denser integration. By stably printing such integrated photonic circuits on standard semiconductor samples, we show the concept's CMOS compatibility. With this, we lay out a promising, future avenue for scalable integration of hybrid photonic and electronic components.

6.
Chaos ; 31(12): 121104, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34972314

RESUMO

Nonlinear spatiotemporal systems are the basis for countless physical phenomena in such diverse fields as ecology, optics, electronics, and neuroscience. The canonical approach to unify models originating from different fields is the normal form description, which determines the generic dynamical aspects and different bifurcation scenarios. Realizing different types of dynamical systems via one experimental platform that enables continuous transition between normal forms through tuning accessible system parameters is, therefore, highly relevant. Here, we show that a transmissive, optically addressed spatial light modulator under coherent optical illumination and optical feedback coupling allows tuning between pitchfork, transcritical, and saddle-node bifurcations of steady states. We demonstrate this by analytically deriving the system's dynamical equations in correspondence to the normal forms of the associated bifurcations and confirm these results via extensive numerical simulations. Our model describes a nematic liquid crystal device using nano-dimensional dichalcogenide (a-As 2S 3) glassy thin films as photo sensors and alignment layers, and we use device parameters obtained from experimental characterization. Optical coupling, for example, using diffraction, holography, or integrated unitary maps allows implementing a variety of system topologies of technological relevance for neural networks and potentially Ising or XY-Hamiltonian models with ultralow energy consumption.

7.
Sensors (Basel) ; 20(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471122

RESUMO

This paper discusses a state-of-the-art inline tubular sensor that can measure the viscosity-density of a passing fluid. In this study, experiments and numerical modelling were performed to develop a deeper understanding of the tubular sensor. Experimental results were compared with an analytical model of the torsional resonator. Good agreement was found at low viscosities, although the numerical model deviated slightly at higher viscosities. The sensor was used to measure viscosities in the range of 0.3-1000 mPa·s at a density of 1000 kg/m3. Above 50 mPa·s, numerical models predicted viscosity within ±5% of actual measurement. However, for lower viscosities, there was a higher deviation between model and experimental results up to a maximum of ±21% deviation at 0.3 mPa·s. The sensor was tested in a flow loop to determine the impact of both laminar and turbulent flow conditions. No significant deviations from the static case were found in either of the flow regimes. The numerical model developed for the tubular torsional sensor was shown to predict the sensor behavior over a wide range, enabling model-based design scaling.

8.
Phys Rev Lett ; 123(5): 054101, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491321

RESUMO

Neural networks are transforming the field of computer algorithms, yet their emulation on current computing substrates is highly inefficient. Reservoir computing was successfully implemented on a large variety of substrates and gave new insight in overcoming this implementation bottleneck. Despite its success, the approach lags behind the state of the art in deep learning. We therefore extend time-delay reservoirs to deep networks and demonstrate that these conceptually correspond to deep convolutional neural networks. Convolution is intrinsically realized on a substrate level by generic drive-response properties of dynamical systems. The resulting novelty is avoiding vector matrix products between layers, which cause low efficiency in today's substrates. Compared to singleton time-delay reservoirs, our deep network achieves accuracy improvements by at least an order of magnitude in Mackey-Glass and Lorenz time series prediction.

9.
J Opt Soc Am A Opt Image Sci Vis ; 36(11): C69-C77, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873701

RESUMO

The concepts of Fourier optics were established in France in the 1940s by Pierre-Michel Duffieux, and laid the foundations of an extensive series of activities in the French research community that have touched on nearly every aspect of contemporary optics and photonics. In this paper, we review a selection of results where applications of the Fourier transform and transfer functions in optics have been applied to yield significant advances in unexpected areas of optics, including the spatial shaping of complex laser beams in amplitude and in phase, real-time ultrafast measurements, novel ghost imaging techniques, and the development of parallel processing methodologies for photonic artificial intelligence.

10.
Opt Express ; 25(3): 2401-2412, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519086

RESUMO

Photonic implementations of reservoir computing (RC) have been receiving considerable attention due to their excellent performance, hardware, and energy efficiency as well as their speed. Here, we study a particularly attractive all-optical system using optical information injection into a semiconductor laser with delayed feedback. We connect its injection locking, consistency, and memory properties to the RC performance in a non-linear prediction task. We find that for partial injection locking we achieve a good combination of consistency and memory. Therefore, we are able to provide a physical basis identifying operational parameters suitable for prediction.

12.
Opt Lett ; 41(12): 2871-4, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304310

RESUMO

We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11 Mbit/s over a public channel.

13.
Opt Lett ; 40(16): 3854-7, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274677

RESUMO

Networks of optical emitters are highly sought-after, both for fundamental investigations as well as for various technological applications. We introduce and implement a novel scheme, based on diffractive optical coupling, allowing for the coupling of large numbers of optical emitters with adjustable weights. We demonstrate its potential by coupling emitters of a 2D array of semiconductor lasers with significant efficiency.

14.
Phys Rev Lett ; 112(10): 107401, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679326

RESUMO

We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physicslike dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing. We identify the cause of this process as charge noise by, first, demonstrating that the hole spin g factor in this configuration (in-plane magnetic field) is strongly dependent on the vertical electric field, and second, by characterizing the charge noise through its effects on the optical transition frequency. An important conclusion is that charge noise is an important hole spin dephasing process.

15.
Nature ; 451(7177): 441-4, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18216849

RESUMO

The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10(4) to 10(6) spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.

16.
BMC Nephrol ; 14: 220, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24112372

RESUMO

BACKGROUND: Poor sleep quality (SQ) and daytime sleepiness (DS) are common in renal transplant (RTx) recipients; however, related data are rare. This study describes the prevalence and frequency of self-reported sleep disturbances in RTx recipients. METHODS: This cross-sectional study included 249 RTx recipients transplanted at three Swiss transplant centers. All had reported poor SQ and / or DS in a previous study. With the Survey of Sleep (SOS) self-report questionnaire, we screened for sleep and health habits, sleep history, main sleep problems and sleep-related disturbances. To determine a basis for preliminary sleep diagnoses according to the International Classification of Sleep Disorders (ICSD), 164 subjects were interviewed (48 in person, 116 via telephone and 85 refused). Descriptive statistics were used to analyze the data and to determine the frequencies and prevalences of specific sleep disorders. RESULTS: The sample had a mean age of 59.1 ± 11.6 years (60.2% male); mean time since Tx was 11.1 ± 7.0 years. The most frequent sleep problem was difficulty staying asleep (49.4%), followed by problems falling asleep (32.1%). The most prevalent sleep disturbance was the need to urinate (62.9%), and 27% reported reduced daytime functionality. Interview data showed that most suffered from the first ICSD category: insomnias. CONCLUSION: Though often disregarded in RTx recipients, sleep is an essential factor of wellbeing. Our findings show high prevalences and incidences of insomnias, with negative impacts on daytime functionality. This indicates a need for further research on the clinical consequences of sleep disturbances and the benefits of insomnia treatment in RTx recipients.


Assuntos
Falência Renal Crônica/epidemiologia , Transplante de Rim/efeitos adversos , Transtornos do Sono-Vigília/epidemiologia , Causalidade , Comorbidade , Feminino , Humanos , Falência Renal Crônica/terapia , Transplante de Rim/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Transtornos do Sono-Vigília/etiologia , Suíça/epidemiologia , Resultado do Tratamento
17.
ArXiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945686

RESUMO

Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of machine learning for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.

18.
Neural Netw ; 146: 151-160, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864223

RESUMO

Deep neural networks unlocked a vast range of new applications by solving tasks of which many were previously deemed as reserved to higher human intelligence. One of the developments enabling this success was a boost in computing power provided by special purpose hardware, such as graphic or tensor processing units. However, these do not leverage fundamental features of neural networks like parallelism and analog state variables. Instead, they emulate neural networks relying on binary computing, which results in unsustainable energy consumption and comparatively low speed. Fully parallel and analogue hardware promises to overcome these challenges, yet the impact of analogue neuron noise and its propagation, i.e. accumulation, threatens rendering such approaches inept. Here, we determine for the first time the propagation of noise in deep neural networks comprising noisy nonlinear neurons in trained fully connected layers. We study additive and multiplicative as well as correlated and uncorrelated noise, and develop analytical methods that predict the noise level in any layer of symmetric deep neural networks or deep neural networks trained with back propagation. We find that noise accumulation is generally bound, and adding additional network layers does not worsen the signal to noise ratio beyond a limit. Most importantly, noise accumulation can be suppressed entirely when neuron activation functions have a slope smaller than unity. We therefore developed the framework for noise in fully connected deep neural networks implemented in analog systems, and identify criteria allowing engineers to design noise-resilient novel neural network hardware.


Assuntos
Algoritmos , Redes Neurais de Computação , Computadores
19.
Sci Rep ; 8(1): 3319, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463810

RESUMO

Spontaneous activity found in neural networks usually results in a reduction of computational performance. As a consequence, artificial neural networks are often operated at the edge of chaos, where the network is stable yet highly susceptible to input information. Surprisingly, regular spontaneous dynamics in Neural Networks beyond their resting state possess a high degree of spatio-temporal synchronization, a situation that can also be found in biological neural networks. Characterizing information preservation via complexity indices, we show how spatial synchronization allows rRNNs to reduce the negative impact of regular spontaneous dynamics on their computational performance.

20.
IEEE J Biomed Health Inform ; 21(4): 930-938, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27076472

RESUMO

We present and evaluate measurement fusion and decision fusion for recognizing apnea and periodic limb movement in sleep episodes. We used an in-bed sensor system composed of an array of strain gauges to detect pressure changes corresponding to respiration and body movement. The sensor system was placed under the bed mattress during sleep and continuously recorded pressure changes. We evaluated both fusion frameworks in a study with nine adult participants that had mixed occurrences of normal sleep, apnea, and periodic limb movement. Both frameworks yielded similar recognition accuracies of 72.1 ± âˆ¼  12% compared to 63.7 ± 17.4% for a rule-based detection reported in the literature. We concluded that the pattern recognition methods can outperform previous rule-based detection methods for classifying disordered breathing and period limb movements simultaneously.


Assuntos
Leitos , Movimento/fisiologia , Polissonografia , Mecânica Respiratória/fisiologia , Síndromes da Apneia do Sono , Actigrafia/instrumentação , Actigrafia/métodos , Adulto , Idoso , Extremidades/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia/instrumentação , Polissonografia/métodos , Sono/fisiologia , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA