Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956875

RESUMO

Cardiac function relies on the autonomous molecular contraction mechanisms in the ventricular wall. Contraction is driven by ordered motor proteins acting in parallel to generate a macroscopic force. The averaged structure can be investigated by diffraction from model tissues such as trabecular and papillary cardiac muscle using collimated synchrotron beams, offering high resolution in reciprocal space. In the ventricular wall, however, the muscle tissue is compartmentalized into smaller branched cardiomyocytes, with a higher degree of disorder. We show that X-ray diffraction is now also capable of resolving the structural organization of actomyosin in single isolated cardiomyocytes of the ventricular wall. In addition to the hexagonal arrangement of thick and thin filaments, the diffraction signal of the hydrated and fixated cardiomyocytes was sufficient to reveal the myosin motor repeat (M3), the troponin complex repeat (Tn), and the sarcomere length SL. The SL signal comprised up to 13 diffraction orders which were used to compute the sarcomere density profile based on Fourier synthesis. The Tn and M3 spacings were found in the same range as previously reported for other muscle types. The approach opens up a pathway to record the structural dynamics of living cells during the contraction cycle, towards a more complete understanding of cardiac muscle function.

2.
J Synchrotron Radiat ; 31(Pt 4): 923-935, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861370

RESUMO

X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.

3.
J Synchrotron Radiat ; 30(Pt 4): 788-795, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37233735

RESUMO

A sample environment and manipulation tool is presented for single-particle X-ray experiments in an aqueous environment. The system is based on a single water droplet, positioned on a substrate that is structured by a hydrophobic and hydrophilic pattern to stabilize the droplet position. The substrate can support several droplets at a time. Evaporation is prevented by covering the droplet by a thin film of mineral oil. In this windowless fluid which minimizes background signal, single particles can be probed and manipulated by micropipettes, which can easily be inserted and steered in the droplet. Holographic X-ray imaging is shown to be well suited to observe and monitor the pipettes, as well as the droplet surface and the particles. Aspiration and force generation are also enabled based on an application of controlled pressure differences. Experimental challenges are addressed and first results are presented, obtained at two different undulator endstations with nano-focused beams. Finally, the sample environment is discussed in view of future coherent imaging and diffraction experiments with synchrotron radiation and single X-ray free-electron laser pulses.


Assuntos
Holografia , Lasers , Raios X , Radiografia , Síncrotrons , Água/química , Difração de Raios X
4.
Sci Commun ; 45(4): 539-554, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37994373

RESUMO

Effective science communication is challenging when scientific messages are informed by a continually updating evidence base and must often compete against misinformation. We argue that we need a new program of science communication as collective intelligence-a collaborative approach, supported by technology. This would have four key advantages over the typical model where scientists communicate as individuals: scientific messages would be informed by (a) a wider base of aggregated knowledge, (b) contributions from a diverse scientific community, (c) participatory input from stakeholders, and (d) better responsiveness to ongoing changes in the state of knowledge.

5.
Ann Am Acad Pol Soc Sci ; 700(1): 26-40, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36338265

RESUMO

Most democracies seek input from scientists to inform policies. This can put scientists in a position of intense scrutiny. Here we focus on situations in which scientific evidence conflicts with people's worldviews, preferences, or vested interests. These conflicts frequently play out through systematic dissemination of disinformation or the spreading of conspiracy theories, which may undermine the public's trust in the work of scientists, muddy the waters of what constitutes truth, and may prevent policy from being informed by the best available evidence. However, there are also instances in which public opposition arises from legitimate value judgments and lived experiences. In this article, we analyze the differences between politically-motivated science denial on the one hand, and justifiable public opposition on the other. We conclude with a set of recommendations on tackling misinformation and understanding the public's lived experiences to preserve legitimate democratic debate of policy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA