Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mil Psychol ; : 1-8, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935408

RESUMO

Stress occurs when conditions burden or exceed an individual's adaptive resources. Military personnel are often tasked with maintaining peak performance under such stressful conditions. Importantly, the effects of stress are nuanced and may vary as a function of individual traits and states. Recent interdisciplinary research has sought to model and identify such relationships. In two previously reported efforts, Soldiers first completed a comprehensive battery of trait assessments across four general domains thought to be predictive of performance: cognitive, health, physical, and social-emotional, and then completed the Decision-Making under Uncertainty and Stress (DeMUS) virtual reality task that probed spatial cognition, memory, and decision-making under stress and variable uncertainty. The present analysis explores whether cognitive, health, physical, and social-emotional trait assessments, as well as physiological state measures, predict or modulate DeMUS performance outcomes under stress. Multiple regression analyses examined the effect of each trait predictor and stress responsiveness on quantitative task performance outcomes. Results revealed that one measure of state stress reactivity, salivary cortisol, predicted lower recognition memory sensitivity. Further, trait measures of healthy eating, agility, flexibility, cognitive updating, and positive emotion predicted enhanced spatial orienting and decision-making performance and confidence. Together, the results suggest that select individual states and traits may predict cognition under stress. Future research should expand to ecologically relevant military stressors during training and operations.

2.
Int J Psychophysiol ; 197: 112298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199297

RESUMO

Sustained attention (SA) is an important cognitive ability that plays a crucial role in successful cognitive control. Resting vagally-mediated heart rate variability (vmHRV) has emerged as an informative index of parasympathetic nervous system activity and a sensitive correlate of individual differences in cognitive control. However, it is unclear how resting vmHRV is associated with individual differences in sustained attention. The primary aim of the current study was to assess if resting vmHRV was associated with individual differences in performance on a neuropsychological assessment of sustained attention. We further aimed to characterize the relationship between resting vmHRV and dispositional factors related to sustained attention, specifically attentional errors in daily life, self-regulation, mindfulness and media-multitasking. Based on previous work, we hypothesized higher resting vmHRV would be associated with better sustained attention across task-based and self-report measures. We did not find resting vmHRV to be significantly associated with performance measures on a task-based assessment of sustained attention. Further, resting vmHRV was not significantly associated with attention errors, self-regulation, mindfulness, or media-multitasking. This work stands to expand the current understanding between parasympathetic functioning, cognition, and behavior, investigating the unexplored domain of sustained attention and related dispositional factors.


Assuntos
Atenção , Sistema Nervoso Parassimpático , Humanos , Atenção/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Cognição , Individualidade , Frequência Cardíaca/fisiologia
3.
Front Hum Neurosci ; 18: 1305446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015825

RESUMO

Introduction: Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods: We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results: Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion: These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.

4.
Brain Sci ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248302

RESUMO

Cranial electrotherapy stimulation (CES) delivers low-intensity electrical currents to the brain to treat anxiety, depression, and pain. Though CES is considered safe and cost-effective, little is known about side effects emerging across different contexts. Our objective was to investigate how varying physical and cognitive demands impact the frequency and intensity of CES vestibular sensations in a sample of healthy young adults. We used a 2 (stimulation: sham, active) × 2 (physical demand: static sway, dynamic sit-to-stand) × 2 (cognitive demand: single-task remain silent, dual-task count backward) repeated measures design. Vestibular sensations were measured with surveys and wearable sensors capturing balance changes. Active stimulation did not influence reported vestibular sensations. Instead, high physical demand predicted more sensation reports. High cognitive demand, but not active stimulation, predicted postural sway unsteadiness. Significant effects of active stimulation on balance were observed only during the dynamic sit-to-stand transitions. In summary, CES induces vestibular sensations only for a specific outcome under certain circumstances. Our findings imply that consumers can safely maximize the benefits of CES while ensuring they are taking steps to minimize any potential side effects by considering their context and circumstances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA