Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Int J Cancer ; 136(12): 2940-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25404014

RESUMO

Patient-derived xenograft (PDX) models have shown to reflect original patient tumors better than any other preclinical model. We embarked in a study establishing a large panel of head and neck squamous cell carcinomas PDX for biomarker analysis and evaluation of established and novel compounds. Out of 115 transplanted specimens 52 models were established of which 29 were characterized for response to docetaxel, cetuximab, methotrexate, carboplatin, 5-fluorouracil and everolimus. Further, tumors were subjected to sequencing analysis and gene expression profiling of selected mTOR pathway members. Most frequent response was observed for docetaxel and cetuximab. Responses to carboplatin, 5-fluorouracil and methotrexate were moderate. Everolimus revealed activity in the majority of PDX. Mutational profiling and gene expression analysis did not reveal a predictive biomarker for everolimus even though by trend RPS6KB1 mRNA expression was associated with response. In conclusion we demonstrate a comprehensively characterized panel of head and neck cancer PDX models, which represent a valuable and renewable tissue resource for evaluation of novel compounds and associated biomarkers.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Análise Mutacional de DNA , Everolimo , Feminino , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/fisiologia , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Infecções por Papillomavirus/virologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/genética , Resultado do Tratamento
3.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136299

RESUMO

Patient-derived xenograft (PDX) tumor models are essential for identifying new biomarkers, signaling pathways and novel targets, to better define key factors of therapy response and resistance mechanisms. Therefore, this study aimed at establishing pancreas carcinoma (PC) PDX models with thorough molecular characterization, and the identification of signatures defining responsiveness toward drug treatment. In total, 45 PC-PDXs were generated from 120 patient tumor specimens and the identity of PDX and corresponding patient tumors was validated. The majority of engrafted PDX models represent ductal adenocarcinomas (PDAC). The PDX growth characteristics were assessed, with great variations in doubling times (4 to 32 days). The mutational analyses revealed an individual mutational profile of the PDXs, predominantly showing alterations in the genes encoding KRAS, TP53, FAT1, KMT2D, MUC4, RNF213, ATR, MUC16, GNAS, RANBP2 and CDKN2A. Sensitivity of PDX toward standard of care (SoC) drugs gemcitabine, 5-fluorouracil, oxaliplatin and abraxane, and combinations thereof, revealed PDX models with sensitivity and resistance toward these treatments. We performed correlation analyses of drug sensitivity of these PDX models and their molecular profile to identify signatures for response and resistance. This study strongly supports the importance and value of PDX models for improvement in therapies of PC.

5.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499080

RESUMO

Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell-mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell-mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies.


Assuntos
Apresentação de Antígeno , Neoplasias , Antígenos de Histocompatibilidade Classe I , Humanos , Evasão da Resposta Imune , Neoplasias/patologia , Sumoilação
6.
Methods Mol Biol ; 2294: 43-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33742393

RESUMO

In cancer research, availability of clinically relevant tumor models is still essential for drug testing, proof of concept studies, and also molecular analyses. To achieve this, models are of advantage, which more closely reflect heterogeneity of tumors. In this regard, patient-derived xenograft (PDX) models more closely recapitulate the native tumor biology, tissue composition, and molecular characteristics. Since metastasis is still the major challenge of tumor therapy, models are pivotal, which resemble this particular property. In this context, PDX model-derived metastasis is of particular interest for testing antimetastatic therapies for their efficacy to better target this systemic disease. This protocol describes the establishment of PDX models from tumor specimen and their applicability for PDX-derived metastasis at metastatic sites such as liver and lung, which are also clinically relevant for the systemic spread of cancer. Analysis of metastasis and methods for quantification of metastatic spread are provided.


Assuntos
Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Cultura Primária de Células/métodos , Preservação de Tecido/métodos , Células Tumorais Cultivadas
7.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330762

RESUMO

BACKGROUND: Adoptive transfer of engineered T cells has shown remarkable success in B-cell malignancies. However, the most common strategy of targeting lineage-specific antigens can lead to undesirable side effects. Also, a substantial fraction of patients have refractory disease. Novel treatment approaches with more precise targeting may be an appealing alternative. Oncogenic somatic mutations represent ideal targets because of tumor specificity. Mutation-derived neoantigens can be recognized by T-cell receptors (TCRs) in the context of MHC-peptide presentation. METHODS: Here we have generated T-cell lines from healthy donors by autologous in vitro priming, targeting a missense mutation on the adaptor protein MyD88, changing leucine at position 265 to proline (MyD88 L265P), which is one of the most common driver mutations found in B-cell lymphomas. RESULTS: Generated T-cell lines were selectively reactive against the mutant HLA-B*07:02-restricted epitope but not against the corresponding wild-type peptide. Cloned TCRs from these cell lines led to mutation-specific and HLA-restricted reactivity with varying functional avidity. T cells engineered with a mutation-specific TCR (TCR-T cells) recognized and killed B-cell lymphoma cell lines characterized by intrinsic MyD88 L265P mutation. Furthermore, TCR-T cells showed promising therapeutic efficacy in xenograft mouse models. In addition, initial safety screening did not indicate any sign of off-target reactivity. CONCLUSION: Taken together, our data suggest that mutation-specific TCRs can be used to target the MyD88 L265P mutation, and hold promise for precision therapy in a significant subgroup of B-cell malignancies, possibly achieving the goal of absolute tumor specificity, a long sought-after dream of immunotherapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Linfoma de Células B/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Humanos , Linfoma de Células B/imunologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA