Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 32(13): 1053-1067, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29603803

RESUMO

RATIONALE: Enhanced nitrous oxide (N2 O) emissions can occur following grassland break-up for renewal or conversion to maize cropping, but knowledge about N2 O production pathways and N2 O reduction to N2 is very limited. A promising tool to address this is the combination of mass spectrometric analysis of N2 O isotopocules and an enhanced approach for data interpretation. METHODS: The isotopocule mapping approach was applied to field data using a δ15 NspN2O and δ18 ON2O map to simultaneously determine N2 O production pathways contribution and N2 O reduction for the first time. Based on the isotopic composition of N2 O produced and literature values for specific N2 O pathways, it was possible to distinguish: (i) heterotrophic bacterial denitrification and/or nitrifier denitrification and (ii) nitrification and/or fungal denitrification and the contribution of N2 O reduction. RESULTS: The isotopic composition of soil-emitted N2 O largely resembled the known end-member values for bacterial denitrification. The isotopocule mapping approach indicated different effects of N2 O reduction on the isotopic composition of soil-emitted N2 O for the two soils under study. Differing N2 O production pathways in different seasons were not observed, but management events and soil conditions had a significant impact on pathway contribution and N2 O reduction. N2 O reduction data were compared with a parallel 15 N-labelling experiment. CONCLUSIONS: The field application of the isotopocule mapping approach opens up new prospects for studying N2 O production and consumption of N2 O in soil simultaneously based on mass spectrometric analysis of natural abundance N2 O. However, further studies are needed in order to properly validate the isotopocule mapping approach.

2.
Sensors (Basel) ; 14(1): 212-28, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24366178

RESUMO

We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.


Assuntos
Irrigação Agrícola/normas , Monitoramento Ambiental/métodos , Qualidade da Água , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA