Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(6): 1292-1305.e8, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30765193

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for resolving transcriptional heterogeneity. However, its application to studying cancerous tissues is currently hampered by the lack of coverage across key mutation hotspots in the vast majority of cells; this lack of coverage prevents the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a method for the high-sensitivity detection of multiple mutations within single cells from both genomic and coding DNA, in parallel with unbiased whole-transcriptome analysis. Applying TARGET-seq to 4,559 single cells, we demonstrate how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in myeloproliferative neoplasms (MPN) stem and progenitor cells, providing insights into deregulated pathways of mutant and non-mutant cells. TARGET-seq is a powerful tool for resolving the molecular signatures of genetically distinct subclones of cancer cells.


Assuntos
Biomarcadores Tumorais/genética , Análise Mutacional de DNA/métodos , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia/genética , Mutação , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Células Jurkat , Células K562 , Reprodutibilidade dos Testes , Schizosaccharomyces/genética
2.
Blood ; 134(13): 1059-1071, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31383639

RESUMO

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.


Assuntos
Feto/citologia , Linfopoese , Neprilisina/análise , Células Precursoras de Linfócitos B/citologia , Adulto , Medula Óssea/embriologia , Medula Óssea/metabolismo , Células Cultivadas , Feto/embriologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Fígado/metabolismo , Neprilisina/genética , Células Precursoras de Linfócitos B/metabolismo , Transcriptoma
3.
PLoS Genet ; 11(1): e1004876, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25625282

RESUMO

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Glucose-6-Fosfatase/genética , Insulina/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Exoma/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Receptor do Peptídeo Semelhante ao Glucagon 1 , Índice Glicêmico/genética , Humanos , Insulina/genética , Polimorfismo de Nucleotídeo Único , Receptores de Glucagon/genética
4.
Nature ; 463(7283): 893-8, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20164919

RESUMO

The cancer genome is moulded by the dual processes of somatic mutation and selection. Homozygous deletions in cancer genomes occur over recessive cancer genes, where they can confer selective growth advantage, and over fragile sites, where they are thought to reflect an increased local rate of DNA breakage. However, most homozygous deletions in cancer genomes are unexplained. Here we identified 2,428 somatic homozygous deletions in 746 cancer cell lines. These overlie 11% of protein-coding genes that, therefore, are not mandatory for survival of human cells. We derived structural signatures that distinguish between homozygous deletions over recessive cancer genes and fragile sites. Application to clusters of unexplained homozygous deletions suggests that many are in regions of inherent fragility, whereas a small subset overlies recessive cancer genes. The results illustrate how structural signatures can be used to distinguish between the influences of mutation and selection in cancer genomes. The extensive copy number, genotyping, sequence and expression data available for this large series of publicly available cancer cell lines renders them informative reagents for future studies of cancer biology and drug discovery.


Assuntos
Sítios Frágeis do Cromossomo/genética , Deleção de Genes , Genes Neoplásicos/genética , Genes Recessivos/genética , Genoma Humano/genética , Homozigoto , Neoplasias/genética , Seleção Genética/genética , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Dosagem de Genes/genética , Humanos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento Físico do Cromossomo , Reprodutibilidade dos Testes
5.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20054297

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Assuntos
Carcinoma de Células Renais/genética , Genes da Neurofibromatose 2 , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Neoplasias Renais/genética , Proteínas Nucleares/genética , Oxirredutases N-Desmetilantes/genética , Carcinoma de Células Renais/patologia , Hipóxia Celular/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases , Humanos , Neoplasias Renais/patologia , Mutação/genética , Análise de Sequência de DNA
6.
Nat Genet ; 39(9): 1127-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704778

RESUMO

Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Linhagem Celular Transformada , Códon sem Sentido , Análise Mutacional de DNA , Saúde da Família , Feminino , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Dados de Sequência Molecular , Linhagem , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Síndrome
7.
Nat Genet ; 37(6): 590-2, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908952

RESUMO

We examined the coding sequence of 518 protein kinases, approximately 1.3 Mb of DNA per sample, in 25 breast cancers. In many tumors, we detected no somatic mutations. But a few had numerous somatic mutations with distinctive patterns indicative of either a mutator phenotype or a past exposure.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Mutação , Proteínas Quinases/genética , Idoso , Análise Mutacional de DNA , Feminino , Humanos , Família Multigênica
8.
Nature ; 446(7132): 153-8, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17344846

RESUMO

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias/genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Humanos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Quinases/química , Proteínas Quinases/genética
9.
BMJ Open ; 13(10): e074679, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898487

RESUMO

INTRODUCTION: Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. There is an observed variation in the efficacy of the current first-line therapies across different regions. Such heterogeneity could be a function of host, parasite and drug factors. An individual participant data meta-analysis (IPD-MA) is planned to explore the determinants of treatment outcomes. METHODS AND ANALYSIS: The Infectious Diseases Data Observatory (IDDO) VL living systematic review (IDDO VL LSR) library is an open-access resource of all published therapeutic studies in VL since 1980. For this current review, the search includes all clinical trials published between 1 January 1980 and 2 May 2021. Studies indexed in the IDDO VL LSR library were screened for eligibility for inclusion in this IPD-MA. Corresponding authors and principal investigators of the studies meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Authors agreeing to participate in this collaborative research were requested to share the IPD using the IDDO VL data platform. The IDDO VL data platform currently holds data sets from clinical trials standardised to a common data format and provides a unique opportunity to identify host, parasite and drug determinants of treatment outcomes. Multivariable regression models will be constructed to identify determinants of therapeutic outcomes using generalised linear mixed-effects models accounting for within-study site clustering. ETHICS AND DISSEMINATION: This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (Exempt granted on 29 March 2023, OxTREC REF: IDDO) Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (Letter no: RMRI/EC/30/2022) on 04-07-2022. The results of this IPD-MA will be disseminated at conferences, IDDO website and any peer-reviewed publications. All publications will be open source. Findings of this research will be critically important for the control programmes at regional/global levels, policy makers and groups developing new VL treatments. PROSPERO REGISTRATION: CRD42021284622.


Assuntos
Leishmaniose Visceral , Parasitos , Humanos , Leishmaniose Visceral/tratamento farmacológico , Metanálise como Assunto , Resultado do Tratamento
10.
BMJ Open ; 13(12): e074841, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38101841

RESUMO

INTRODUCTION: Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. Despite anaemia being a common haematological manifestation of VL, the evolution of different haematological characteristics following treatment remains poorly understood. An individual participant data meta-analysis (IPD-MA) is planned to characterise the haematological dynamics in patients with VL. METHODS AND ANALYSIS: The Infectious Diseases Data Observatory (IDDO) VL data platform is a global repository of IPD from therapeutic studies identified through a systematic search of published literature (PROSPERO registration: CRD42021284622). The platform currently holds datasets from clinical trials standardised to a common data format. Corresponding authors and principal investigators of the studies indexed in the IDDO VL data platform meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Mixed-effects multivariable regression models will be constructed to identify determinants of haematological parameters by taking clustering within study sites into account. ETHICS AND DISSEMINATION: This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (exempt granted on 29 March 2023, OxTREC REF: IDDO). Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (letter no.: RMRI/EC/30/2022) on 4 July 2022. The results of this analysis will be disseminated at conferences, the IDDO website and peer-reviewed publications in open-access journals. The findings of this research will be critically important for control programmes at regional and global levels, policymakers and groups developing new VL treatments. PROSPERO REGISTRATION NUMBER: CRD42021284622.


Assuntos
Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Revisões Sistemáticas como Assunto , Metanálise como Assunto
11.
Cell Rep ; 36(11): 109698, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525349

RESUMO

Human hematopoiesis is a dynamic process that starts in utero 18-21 days post-conception. Understanding the site- and stage-specific variation in hematopoiesis is important if we are to understand the origin of hematological disorders, many of which occur at specific points in the human lifespan. To unravel how the hematopoietic stem/progenitor cell (HSPC) compartment changes during human ontogeny and the underlying gene regulatory mechanisms, we compare 57,489 HSPCs from 5 different tissues spanning 4 developmental stages through the human lifetime. Single-cell transcriptomic analysis identifies significant site- and developmental stage-specific transitions in cellular architecture and gene regulatory networks. Hematopoietic stem cells show progression from cycling to quiescence and increased inflammatory signaling during ontogeny. We demonstrate the utility of this dataset for understanding aberrant hematopoiesis through comparison to two cancers that present at distinct time points in postnatal life-juvenile myelomonocytic leukemia, a childhood cancer, and myelofibrosis, which classically presents in older adults.


Assuntos
Linhagem da Célula/genética , Redes Reguladoras de Genes/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Transcriptoma
12.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416891

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin-CD34+CD38-CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a "first hit," (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mielomonocítica Juvenil/patologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Feminino , Humanos , Leucemia Mielomonocítica Juvenil/genética , Masculino , Camundongos , Mutação/genética , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Regulação para Cima/genética
13.
Leukemia ; 35(1): 90-106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32242051

RESUMO

MLL gene rearrangements (MLLr) are a common cause of aggressive, incurable acute lymphoblastic leukemias (ALL) in infants and children, most of which originate in utero. The most common MLLr produces an MLL-AF4 fusion protein. MLL-AF4 promotes leukemogenesis by activating key target genes, mainly through recruitment of DOT1L and increased histone H3 lysine-79 methylation (H3K79me2/3). One key MLL-AF4 target gene is PROM1, which encodes CD133 (Prominin-1). CD133 is a pentaspan transmembrane glycoprotein that represents a potential pan-cancer target as it is found on multiple cancer stem cells. Here we demonstrate that aberrant PROM1/CD133 expression is essential for leukemic cell growth, mediated by direct binding of MLL-AF4. Activation is controlled by an intragenic H3K79me2/3 enhancer element (KEE) leading to increased enhancer-promoter interactions between PROM1 and the nearby gene TAPT1. This dual locus regulation is reflected in a strong correlation of expression in leukemia. We find that in PROM1/CD133 non-expressing cells, the PROM1 locus is repressed by polycomb repressive complex 2 (PRC2) binding, associated with reduced expression of TAPT1, partially due to loss of interactions with the PROM1 locus. Together, these results provide the first detailed analysis of PROM1/CD133 regulation that explains CD133 expression in MLLr ALL.


Assuntos
Antígeno AC133/genética , Elementos Facilitadores Genéticos , Regulação Leucêmica da Expressão Gênica , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Inativação Gênica , Humanos , Imunofenotipagem , Leucemia/genética , Leucemia/metabolismo , Modelos Biológicos , Ligação Proteica
14.
Cancer Res ; 66(8): 3987-91, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618716

RESUMO

Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Dacarbazina/análogos & derivados , Glioma/genética , Mutação , Recidiva Local de Neoplasia/genética , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Dacarbazina/uso terapêutico , Feminino , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/enzimologia , Proteínas Quinases/genética , Temozolomida
15.
Cancer Res ; 65(17): 7591-5, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140923

RESUMO

Protein kinases are frequently mutated in human cancer and inhibitors of mutant protein kinases have proven to be effective anticancer drugs. We screened the coding sequences of 518 protein kinases (approximately 1.3 Mb of DNA per sample) for somatic mutations in 26 primary lung neoplasms and seven lung cancer cell lines. One hundred eighty-eight somatic mutations were detected in 141 genes. Of these, 35 were synonymous (silent) changes. This result indicates that most of the 188 mutations were "passenger" mutations that are not causally implicated in oncogenesis. However, an excess of approximately 40 nonsynonymous substitutions compared with that expected by chance (P = 0.07) suggests that some nonsynonymous mutations have been selected and are contributing to oncogenesis. There was considerable variation between individual lung cancers in the number of mutations observed and no mutations were found in lung carcinoids. The mutational spectra of most lung cancers were characterized by a high proportion of C:G > A:T transversions, compatible with the mutagenic effects of tobacco carcinogens. However, one neuroendocrine cancer cell line had a distinctive mutational spectrum reminiscent of UV-induced DNA damage. The results suggest that several mutated protein kinases may be contributing to lung cancer development, but that mutations in each one are infrequent.


Assuntos
Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Mutação , Proteínas Quinases/genética , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Tumor Carcinoide/enzimologia , Tumor Carcinoide/genética , Carcinoma de Células Grandes/enzimologia , Carcinoma de Células Grandes/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Humanos
16.
Mol Cancer Ther ; 5(11): 2606-12, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17088437

RESUMO

The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens.


Assuntos
Linhagem Celular Tumoral , Genes Neoplásicos , Mutação , Análise Mutacional de DNA , Éxons , Deleção de Genes , Perfilação da Expressão Gênica , Homozigoto , Humanos , Sítios de Splice de RNA
17.
Autism Res ; 9(1): 9-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26052927

RESUMO

Rare de novo and inherited copy number variations (CNVs) have been implicated in autism spectrum disorder (ASD) risk. However, the genetic underpinnings of ASD remain unknown in more than 80% of cases. Therefore, identification of novel candidate genes and corroboration of known candidate genes may broaden the horizons of determining genetic risk alleles, and subsequent development of diagnostic testing. Here, using genotyping arrays, we characterized the genetic architecture of rare CNVs (<1% frequency) in a Finnish case-control dataset. Unsurprisingly, ASD cases harbored a significant excess of rare, large (>1 Mb) CNVs and rare, exonic CNVs. The exonic rare de novo CNV rate (∼22.5%) seemed higher compared to previous reports. We identified several CNVs in well-known ASD regions including GSTM1-5, DISC1, FHIT, RBFOX1, CHRNA7, 15q11.2, 15q13.2-q13.3, 17q12, and 22q11.21. Additionally, several novel candidate genes (BDKRB1, BDKRB2, AP2M1, SPTA1, PTH1R, CYP2E1, PLCD3, F2RL1, UQCRC2, LILRB3, RPS9, and COL11A2) were identified through gene prioritization. The majority of these genes belong to neuroactive ligand-receptor interaction pathways, and calcium signaling pathways, thus suggesting that a subset of these novel candidate genes may contribute to ASD risk. Furthermore, several metabolic pathways like caffeine metabolism, drug metabolism, retinol metabolism, and calcium-signaling pathway were found to be affected by the rare exonic ASD CNVs. Additionally, biological processes such as bradykinin receptor activity, endoderm formation and development, and oxidoreductase activity were enriched among the rare exonic ASD CNVs. Overall, our findings may add data about new genes and pathways that contribute to the genetic architecture of ASD.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Estudos de Casos e Controles , Finlândia , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
20.
PLoS One ; 8(2): e56356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460800

RESUMO

Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.


Assuntos
Aptidão , Criatividade , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Música , Adolescente , Adulto , Pareamento de Bases/genética , Bases de Dados Genéticas , Família , Feminino , Duplicação Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA