Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochim Biophys Acta ; 1852(7): 1498-510, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25887161

RESUMO

Atherosclerosis, the underlying cause of myocardial infarction and thrombotic cerebrovascular events, is responsible for the majority of deaths in westernized societies. Mortality from this disease is also increasing at a marked rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as interleukins-1 and -33, transforming growth factor-ß and interferon-γ, orchestrates the inflammatory response in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling pathways that control the inflammatory response. This review will discuss the molecular basis of atherosclerosis with particular emphasis on the roles of the immune cells and cytokines along with the dysfunctional lipid homeostasis and cell signaling associated with this disease.


Assuntos
Aterosclerose/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Animais , Aterosclerose/imunologia , Homeostase , Humanos , Inflamação/metabolismo
2.
Cytokine ; 64(1): 357-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23791479

RESUMO

A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-ß, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-ß-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process.


Assuntos
Aterosclerose/patologia , Células Espumosas/patologia , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Pinocitose/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Aterosclerose/imunologia , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Citocalasina D/farmacologia , Células Espumosas/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Inflamação/imunologia , Interleucina-33 , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
3.
Curr Atheroscler Rep ; 14(3): 284-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22419222

RESUMO

Liver X receptors (LXRs) belong to the nuclear receptor superfamily of ligand-dependent transcription factors. LXRs are activated by oxysterols, metabolites of cholesterol, and therefore act as intracellular sensors of this lipid. There are two LXR genes (α and ß) that display distinct tissue/cell expression profiles. LXRs interact with regulatory sequences in target genes as heterodimers with retinoid X receptor. Such direct targets of LXR actions include important genes implicated in the control of lipid homeostasis, particularly reverse cholesterol transport. In addition, LXRs attenuate the transcription of genes associated with the inflammatory response indirectly by transrepression. In this review, we describe recent evidence that both highlights the key roles of LXRs in atherosclerosis and inflammation and provides novel insights into the mechanisms underlying their actions. In addition, we discuss the major limitations of LXRs as therapeutic targets for the treatment of atherosclerosis and how these are being addressed.


Assuntos
Aterosclerose/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Receptores Nucleares Órfãos/fisiologia , Animais , Humanos , Receptores X do Fígado
4.
Sci Rep ; 9(1): 11317, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383884

RESUMO

Atherosclerosis, a chronic inflammatory disorder of the walls of arteries, causes more deaths worldwide than any other disease. Cytokines, which are present at high levels in atherosclerotic plaques, play important roles in regulating the initiation and the progression of the disease. Previous studies using animal and cell culture model systems revealed protective, anti-atherogenic effects of the cytokine interleukin-33 (IL-33). The action of this cytokine involves both the induction and suppression of expression of many genes. Unfortunately, the signaling pathways that are responsible for the inhibition of gene expression by this cytokine are poorly understood. Further studies are required given the important roles of genes whose expression is inhibited by IL-33 in key cellular processes associated with atherosclerosis such as monocyte recruitment, foam cell formation and lipoprotein metabolism. We have investigated here the roles of various known IL-33 activated signaling pathways in such inhibitory actions using RNA interference-mediated knockdown assays and monocyte chemotactic protein-1 and intercellular adhesion molecule-1 as model genes. Key roles were identified for extracellular signal-regulated kinase-1/2, p38α kinase, c-Jun N-terminal kinase-1/2, phosphoinositide 3-kinase-γ, and p50 and p65 nuclear factor-κB in such inhibitory action of IL-33. These studies provide new insights on the signaling pathways through which IL-33 inhibits the macrophage expression of key atherosclerosis-associated genes.


Assuntos
Aterosclerose/genética , Interleucina-33/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais , Aterosclerose/metabolismo , Quimiocina CCL2/genética , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/genética , Macrófagos/metabolismo
5.
Int J Biochem Cell Biol ; 46: 113-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275094

RESUMO

Atherosclerosis is an inflammatory disorder of the vasculature regulated by cytokines. Amongst the cytokines, IL-33 attenuates the development of atherosclerosis in mouse model systems via several mechanisms, including inhibition of macrophage foam cell formation and promotion of a Th1 to Th2 shift. Proteases produced by macrophages, such as matrix metalloproteinases and members of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family, play potential roles in regulating atherosclerotic plaque stability. Despite such importance, the action of IL-33 on the expression of such proteases has not been analyzed. We have therefore investigated the effect of IL-33 on the expression of ADAMTS-1, -4 and -5 in human macrophages. Immunohistochemical analysis showed that these three proteases were expressed in human atherosclerotic lesions, particularly by macrophages and, to a lesser extent, by smooth muscle cells and endothelial cells. The expression of ADAMTS-1, -4 and -5 in human macrophages was specifically inhibited by IL-33. The action of IL-33 on the expression of these ADAMTS members was mediated through its receptor ST2. IL-33 activated ERK1/2, JNK1/2 and c-Jun, but not p38 MAPK or Akt, in human macrophages. RNA interference assays using a combination of adenoviral encoding small hairpin RNA and small interfering RNA showed a requirement of ERK1/2, JNK1/2, c-Jun, PI3Kγ and PI3Kδ, but not p38α, in the IL-33-inhibited expression of these ADAMTS isoforms. These studies provide novel insights into the expression of ADAMTS-1, -4 and -5 in human atherosclerotic lesions and the regulation of their expression in human macrophages by the key anti-atherogenic cytokine IL-33.


Assuntos
Citocinas/metabolismo , Desintegrinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucinas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trombospondinas/metabolismo , Animais , Aterosclerose/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Transdução de Sinais
6.
Int J Biochem Cell Biol ; 43(5): 805-11, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21334453

RESUMO

Atherosclerosis is an inflammatory disorder of the vasculature that is orchestrated by the action of cytokines. Macrophages play a prominent role in all stages of this disease, including foam cell formation, production of reactive oxygen species, modulation of the inflammatory response and the regulation of the stability of atherosclerotic plaques. The role of the matrix metalloproteinase family in the control of plaque stability is well established. A disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) family has been implicated in several diseases and the expression of ADAMTS-4 in macrophages of atherosclerotic lesions has suggested a potential role for this protease in atherosclerosis. However, the action of cytokines on the expression of ADAMTS-4 in macrophages is poorly understood. We have investigated here the effect of transforming growth factor-ß (TGF-ß) on ADAMTS-4 expression in macrophages along with the regulatory mechanisms underlying its actions. Consistent with the anti-atherogenic role of TGF-ß, this cytokine decreased the expression of ADAMTS-4 mRNA and protein in human macrophages. Transient transfection assays showed that the -100 to +10 promoter region contained the minimal TGF-ß response elements. Small-interfering RNA-mediated knockdown revealed a critical role for Smads, p38 mitogen-activated protein kinase and c-Jun in the action of TGF-ß on ADAMTS-4 mRNA expression. These studies show for the first time that TGF-ß inhibits the expression of ADAMTS-4 in human macrophages and identifies the signalling pathways underlying this response. The inhibition of macrophage ADAMTS-4 expression is likely to contribute to the anti-atherogenic, plaque stabilisation action of TGF-ß.


Assuntos
Proteínas ADAM/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/efeitos dos fármacos , Pró-Colágeno N-Endopeptidase/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS4 , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Pró-Colágeno N-Endopeptidase/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA