Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 249(2): 601-613, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30317440

RESUMO

MAIN CONCLUSION: ATR-FTIR spectroscopy in combination with uni- and multivariate analysis was used to quantify the spectral-chemical composition of the leaf cuticle of pea, investigating the effects of variety and heat stress. Field pea (Pisum sativum L.) is sensitive to heat stress and our goal was to improve canopy cooling and flower retention by investigating the protective role of lipid-related compounds in leaf cuticle, and to use results in the future to identify heat resistant genotypes. The objective was to use Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, a non-invasive technique, to investigate and quantify changes in adaxial cuticles of fresh leaves of pea varieties that were subjected to heat stress. Eleven varieties were grown under control (24/18 °C day/night) and heat stress conditions (35/18 °C day/night, for 5 days at the early flowering stage). These 11 had significant spectral differences in the integrated area of the main lipid region, CH2 region, CH3 peak, asymmetric and symmetric CH2 peaks, ester carbonyl peak, and the peak area ratio of CH2 to CH3 and ester carbonyl to CH2 asymmetric peak, indicating that cuticles had spectral-chemical diversity of waxes, cutin, and polysaccharides. Results indicated considerable diversity in spectral-chemical makeup of leaf cuticles within commercially available field pea varieties and they responded differently to high growth temperature, revealing their diverse potential to resist heat stress. The ATR-FTIR spectral technique can, therefore, be further used as a medium-throughput approach for rapid screening of superior cultivars for heat tolerance.


Assuntos
Pisum sativum/genética , Folhas de Planta/genética , Genótipo , Resposta ao Choque Térmico , Lipídeos de Membrana/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ceras/metabolismo
2.
Plant Cell Environ ; 42(1): 354-372, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136298

RESUMO

Field pea (Pisum sativum), a major grain legume crop, is autogamous and adapted to temperate climates. The objectives of this study were to investigate effects of high temperature stress on stamen chemical composition, anther dehiscence, pollen viability, pollen interactions with pistil and ovules, and ovule growth and viability. Two cultivars ("CDC Golden" and "CDC Sage") were exposed to 24/18°C (day/night) continually or to 35/18°C for 4 or 7 days. Heat stress altered stamen chemical composition, with lipid composition of "CDC Sage" being more stable compared with "CDC Golden." Heat stress reduced pollen viability and the proportion of ovules that received a pollen tube. After 4 days at 35°C, pollen viability in flower buds decreased in "CDC Golden," but not in "CDC Sage." After 7 days, partial to full failure of anthers to dehisce resulted in subnormal pollen loads on stigmas. Although growth (ovule size) of fertilized ovules was stimulated by 35°C, heat stress tended to decrease ovule viability. Pollen appears susceptible to stress, but not many grains are needed for successful fertilization. Ovule fertilization and embryos are less susceptible to heat, but further research is warranted to link the exact degree of resilience to stress intensity.


Assuntos
Flores/fisiologia , Pisum sativum/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Termotolerância/fisiologia , Temperatura Alta
3.
Plant Cell Environ ; 38(11): 2387-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26081983

RESUMO

Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.


Assuntos
Pisum sativum/fisiologia , Germinação , Resposta ao Choque Térmico , Metabolismo dos Lipídeos , Pisum sativum/anatomia & histologia , Pisum sativum/crescimento & desenvolvimento , Pólen/anatomia & histologia , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
4.
PLoS One ; 16(11): e0251167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735457

RESUMO

Field pea (Pisum sativum L.), a cool-season legume crop, is known for poor heat tolerance. Our previous work identified PR11-2 and PR11-90 as heat tolerant and susceptible lines in a recombinant inbred population. CDC Amarillo, a Canadian elite pea variety, was considered as another heat tolerant variety based on its similar field performance as PR11-2. This study aimed to characterize the differential transcription. Plants of these three varieties were stressed for 3 h at 38°C prior to self-pollination, and RNAs from heat stressed anthers and stipules on the same flowering node were extracted and sequenced via the Illumina NovaSeq platform for the characterization of heat responsive genes. In silico results were further validated by qPCR assay. Differentially expressed genes (DEGs) were identified at log2 |fold change (FC)| ≥ 2 between high temperature and control temperature, the three varieties shared 588 DEGs which were up-regulated and 220 genes which were down-regulated in anthers when subjected to heat treatment. In stipules, 879 DEGs (463/416 upregulation/downregulation) were consistent among varieties. The above heat-induced genes of the two plant organs were related to several biological processes i.e., response to heat, protein folding and DNA templated transcription. Ten gene ontology (GO) terms were over-represented in the consistently down-regulated DEGs of the two organs, and these terms were mainly related to cell wall macromolecule metabolism, lipid transport, lipid localization, and lipid metabolic processes. GO enrichment analysis on distinct DEGs of individual pea varieties suggested that heat affected biological processes were dynamic, and variety distinct responses provide insight into molecular mechanisms of heat-tolerance response. Several biological processes, e.g., cellular response to DNA damage stimulus in stipule, electron transport chain in anther that were only observed in heat induced PR11-2 and CDC Amarillo, and their relevance to field pea heat tolerance is worth further validation.


Assuntos
Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Resposta ao Choque Térmico , Pisum sativum , Flores/genética , Flores/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA