Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 21(1): 661-682, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33061839

RESUMO

Development and commercialization of self-healing concrete is hampered due to a lack of standardized test methods. Six inter-laboratory testing programs are being executed by the EU COST action SARCOS, each focusing on test methods for a specific self-healing technique. This paper reports on the comparison of tests for mortar and concrete specimens with polyurethane encapsulated in glass macrocapsules. First, the pre-cracking method was analysed: mortar specimens were cracked in a three-point bending test followed by an active crack width control technique to restrain the crack width up to a predefined value, while the concrete specimens were cracked in a three-point bending setup with a displacement-controlled loading system. Microscopic measurements showed that with the application of the active control technique almost all crack widths were within a narrow predefined range. Conversely, for the concrete specimens the variation on the crack width was higher. After pre-cracking, the self-healing effect was characterized via durability tests: the mortar specimens were tested in a water permeability test and the spread of the healing agent on the crack surfaces was determined, while the concrete specimens were subjected to two capillary water absorption tests, executed with a different type of waterproofing applied on the zone around the crack. The quality of the waterproofing was found to be important, as different results were obtained in each absorption test. For the permeability test, 4 out of 6 labs obtained a comparable flow rate for the reference specimens, yet all 6 labs obtained comparable sealing efficiencies, highlighting the potential for further standardization.

2.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591528

RESUMO

The role of precursor characteristics and mixture composition design of alkali-activated materials (AAM) has been intensively researched with different types of alumino-silicate sources. Two illite-based precursors were prepared and investigated-(i) raw illite clay (IC) treated in a laboratory at 700, 750, and 800 ∘C and (ii) a red brick waste coming from the brick production plant. The fineness of precursors was determined and compared. The precursors were activated with 6 M and 7 M NaOH alkali solutions. Silica gel addition was considered in the composition of AAM. The XRD results indicate the transformation of both precursor types under alkali activation. The efflorescence salts were analyzed on the samples with silica gel addition. Calcined IC precursor allowed us to obtain AAM with a strength from 11 to 16 MPa with an increasing strength gain during curing. The red brick waste precursor showed a compressive strength from 14 to 28 MPa. A high early strength was obtained with no further strength increase. The hydrosodalite and zeolite crystals were detected in the structure of AAM based on the red brick waste precursor. The results indicate different characteristics of AAM based on similar source precursors, showing the important role of the proper treatment of precursors before alkali activation.

3.
Materials (Basel) ; 14(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34640268

RESUMO

In the hydration process of inorganic cements, the analysis of calorimetric measurements is one of the possible ways to better understand hydration processes and to keep these processes under control. This study contains data from the study of thermokinetic processes in alkali-activated blast-furnace slag cements compared to ordinary Portland cement (OPC). The obtained results show that, in contrast to OPC, the heat release values cannot be considered as a characteristic of the activity of alkali-activated blast-furnace slag cements. In addition, it is concluded that in the case of OPC cements, cumulative heat release is a criterion for the selection of effective curing parameters, while in the case of alkali-activated blast-furnace slag cements, a higher heat rate (which increases sharply with increasing temperature from 20 to 40 °C) is a criterion. From the point of views of thermokinetics, the rate of heat release at temperatures up to 40 °C can be a qualitative criterion that allows to choose the parameters of heat curing of alkali-activated cement concretes. By introducing a crystallo-chemical hardening accelerator, such as Portland cement clinker, into the composition of alkali-activated blast-furnace slag cements, it is possible to accelerate the processes not only in the condensation-crystallization structure formation stage, but also in the dispersion-coagulation structure formation stage. Portland cement clinker increased the efficiency of thermal curing at relatively non-high temperatures.

4.
Materials (Basel) ; 14(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920620

RESUMO

Self-healing concrete has the potential to optimise traditional design approaches; however, commercial uptake requires the ability to harmonize against standardized frameworks. Within EU SARCOS COST Action, different interlaboratory tests were executed on different self-healing techniques. This paper reports on the evaluation of the effectiveness of proposed experimental methodologies suited for self-healing concrete with expansive mineral additions. Concrete prisms and discs with MgO-based healing agents were produced and precracked. Water absorption and water flow tests were executed over a healing period spanning 6 months to assess the sealing efficiency, and the crack width reduction with time was monitored. High variability was reported for both reference (REF) and healing-addition (ADD) series affecting the reproducibility of cracking. However, within each lab, the crack width creation was repeatable. ADD reported larger crack widths. The latter influenced the observed healing making direct comparisons across labs prone to errors. Water absorption tests highlighted were susceptible to application errors. Concurrently, the potential of water flow tests as a facile method for assessment of healing performance was shown across all labs. Overall, the importance of repeatability and reproducibility of testing methods is highlighted in providing a sound basis for incorporation of self-healing concepts in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA