Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 51(2): 258-271.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350176

RESUMO

Macrophage plasticity is critical for normal tissue repair to ensure transition from the inflammatory to the proliferative phase of healing. We examined macrophages isolated from wounds of patients afflicted with diabetes and of healthy controls and found differential expression of the methyltransferase Setdb2. Myeloid-specific deletion of Setdb2 impaired the transition of macrophages from an inflammatory phenotype to a reparative one in normal wound healing. Mechanistically, Setdb2 trimethylated histone 3 at NF-κB binding sites on inflammatory cytokine gene promoters to suppress transcription. Setdb2 expression in wound macrophages was regulated by interferon (IFN) ß, and under diabetic conditions, this IFNß-Setdb2 axis was impaired, leading to a persistent inflammatory macrophage phenotype in diabetic wounds. Setdb2 regulated the expression of xanthine oxidase and thereby the uric acid (UA) pathway of purine catabolism in macrophages, and pharmacologic targeting of Setdb2 or the UA pathway improved healing. Thus, Setdb2 regulates macrophage plasticity during normal and pathologic wound repair and is a target for therapeutic manipulation.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Macrófagos/fisiologia , Proteínas Nucleares/metabolismo , Idoso , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Fenótipo , Ácido Úrico/metabolismo , Cicatrização
2.
Genet Epidemiol ; 47(4): 303-313, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821788

RESUMO

Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Modelos Genéticos , Fatores de Risco , Herança Multifatorial/genética
3.
Genome Res ; 31(12): 2258-2275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815310

RESUMO

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

4.
Am J Physiol Endocrinol Metab ; 325(5): E466-E479, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729021

RESUMO

Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.


Assuntos
Treinamento Intervalado de Alta Intensidade , Gotículas Lipídicas , Adulto , Humanos , Obesidade/terapia , Exercício Físico/fisiologia , Metabolismo Energético/fisiologia , Lipídeos
5.
J Physiol ; 600(9): 2127-2146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249225

RESUMO

Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m-2 ) were assigned to 12 weeks (4 days week-1 ) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity. KEY POINTS: Exercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear. We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT). The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue. These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.


Assuntos
Exercício Físico , Obesidade , Tecido Adiposo/metabolismo , Adulto , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Humanos , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Redução de Peso
6.
J Nutr ; 151(10): 2868-2881, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34255076

RESUMO

Evaluating the postprandial response to a dietary challenge containing all macronutrients-carbohydrates, lipids, and protein-may provide stronger insights of metabolic health than a fasted measurement. Metabolomic profiling deepens the understanding of the homeostatic and adaptive response to a dietary challenge by classifying multiple metabolic pathways and biomarkers. A total of 26 articles were identified that measure the human blood metabolome or lipidome response to a mixed-macronutrient challenge. Most studies were cross-sectional, exploring the baseline and postprandial response to the dietary challenge. Large variations in study designs were reported, including the macronutrient and caloric composition of the challenge and the delivery of the challenge as a liquid shake or a solid meal. Most studies utilized a targeted metabolomics platform, assessing only a particular metabolic pathway, however, several studies utilized global metabolomics and lipidomics assays demonstrating the expansive postprandial response of the metabolome. The postprandial response of individual amino acids was largely dependent on the amino acid composition of the test meal, with the exception of alanine and proline, 2 nonessential amino acids. Long-chain fatty acids and unsaturated long-chain acylcarnitines rapidly decreased in response to the dietary challenges, representing the switch from fat to carbohydrate oxidation. Studies were reviewed that assessed the metabolome response in the context of obesity and metabolic diseases, providing insight on how weight status and disease influence the ability to cope with a nutrient load and return to homeostasis. Results demonstrate that the flexibility to respond to a substrate load is influenced by obesity and metabolic disease and flexibility alterations will be evident in downstream metabolites of fat, carbohydrate, and protein metabolism. In response, we propose suggestions for standardization between studies with the potential of creating a study exploring the postprandial response to a multitude of challenges with a variety of macronutrients.


Assuntos
Metaboloma , Projetos de Pesquisa , Humanos , Metabolômica , Nutrientes , Período Pós-Prandial
7.
Pediatr Res ; 89(5): 1310-1315, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32492693

RESUMO

BACKGROUND: Psychosocial stress in early childhood is associated with adult obesity and cardiometabolic disease. The association of psychosocial stress with the metabolome in childhood is unknown. METHOD: Low-income children (n = 28, mean age 1.8 years), recruited from the community, participated. Psychosocial stress was measured by diurnal salivary cortisol (cortisol intercept and slope) and by mother-reported chaos in the home using the Confusion, Hubbub, and Order Scale (CHAOS). At mean age 6.1 years, anthropometry was collected and fasting metabolites measured using an untargeted metabolomics and shotgun lipidomics platform. RESULTS: Cortisol slope was inversely associated with fatty acid (FA) 20:3, FA 20:4 and polyunsaturated fatty acids (PUFA) metabolites. A higher CHAOS score was associated with lower very long-chain PUFA metabolites and a trend towards lower long-chain PUFA containing triglycerides. CONCLUSIONS: Psychosocial stress in early childhood, measured with both biological markers and parent report, was associated with lower PUFAs later in childhood. Future work should examine potential mechanisms of association, including dietary intake or direct effects on polyunsaturated fatty acid levels or metabolism. IMPACT: In this longitudinal study, the key message is that diurnal cortisol patterns and greater parent-reported psychosocial stress exposure in early childhood are associated with lower plasma polyunsaturated fatty acid containing lipids 5 years later, potentially indicating altered dietary intake or metabolism associated with psychosocial stress. Untargeted metabolomics and lipidomics can be used to assess changes in metabolism response to psychosocial stress. Stress exposure in early childhood may be associated with the future metabolome. Future work should examine potential pathways of association, including dietary intake and direct effects on metabolism.


Assuntos
Experiências Adversas da Infância , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/sangue , Lipídeos/análise , Antropometria , Biomarcadores/sangue , Criança , Pré-Escolar , Gorduras na Dieta , Ácidos Graxos , Feminino , Humanos , Hidrocortisona/metabolismo , Lactente , Estudos Longitudinais , Masculino , Metabolômica , Pobreza , Estresse Psicológico
8.
Diabetologia ; 63(2): 287-295, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31802145

RESUMO

AIMS/HYPOTHESIS: To understand the complex metabolic changes that occur long before the diagnosis of type 2 diabetes, we investigated differences in metabolomic profiles in plasma between prediabetic and normoglycaemic individuals for subtypes of prediabetes defined by fasting glucose, 2 h glucose and HbA1c measures. METHODS: Untargeted metabolomics data were obtained from 155 plasma samples from 127 Mexican American individuals from Starr County, TX, USA. None had type 2 diabetes at the time of sample collection and 69 had prediabetes by at least one criterion. We tested statistical associations of amino acids and other metabolites with each subtype of prediabetes. RESULTS: We identified distinctive differences in amino acid profiles between prediabetic and normoglycaemic individuals, with further differences in amino acid levels among subtypes of prediabetes. When testing all named metabolites, several fatty acids were also significantly associated with 2 h glucose levels. Multivariate discriminative analyses show that untargeted metabolomic data have considerable potential for identifying metabolic differences among subtypes of prediabetes. CONCLUSIONS/INTERPRETATION: People with each subtype of prediabetes have a distinctive metabolomic signature, beyond the well-known differences in branched-chain amino acids. DATA AVAILABILITY: Metabolomics data are available through the NCBI database of Genotypes and Phenotypes (dbGaP, accession number phs001166; www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001166.v1.p1).


Assuntos
Metabolômica/métodos , Adulto , Idoso , Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos de Cadeia Ramificada/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Jejum/sangue , Hemoglobinas Glicadas/metabolismo , Humanos , Americanos Mexicanos , Pessoa de Meia-Idade , Análise Multivariada , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Texas , Estados Unidos , Adulto Jovem
9.
J Biol Chem ; 292(12): 4766-4769, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28188288

RESUMO

Itaconic acid is an important metabolite produced by macrophages after stimulation with LPS. The role of itaconate in the inflammatory cascade is unclear. Here we used [13C]itaconate and dimethyl [13C]itaconate (DMI) to probe itaconate metabolism, and find that [13C]DMI is not metabolized to itaconate. [13C]Itaconate in the cell culture medium leads to elevated intracellular levels of unlabeled succinate, with no evidence of intracellular uptake. The goal of this study is to encourage the development of effective pro-drug strategies to increase the intracellular levels of itaconate, which will enable more conclusive analysis of its action on macrophages and other cell and tissue types.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Metaboloma , Succinatos/metabolismo , Animais , Células Cultivadas , Lipopolissacarídeos/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Ácido Succínico/metabolismo
10.
Bioinformatics ; 33(10): 1545-1553, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137712

RESUMO

MOTIVATION: Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. RESULTS: Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. AVAILABILITY AND IMPLEMENTATION: http://metscape.med.umich.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Redes e Vias Metabólicas , Metabolômica/métodos , Modelos Biológicos , Adulto , Feminino , Humanos , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
11.
Respir Res ; 19(1): 60, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636049

RESUMO

BACKGROUND: It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. METHODS: Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. RESULTS: The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. CONCLUSIONS: The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Metaboloma/fisiologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Lipídeos/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Estudos Prospectivos , Síndrome do Desconforto Respiratório/genética
12.
J Nutr ; 148(4): 562-572, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659960

RESUMO

Background: trans-10,cis-12 Conjugated linoleic acid (t10,c12-CLA) is a dietary supplement that promotes weight loss by increasing fat oxidation and energy expenditure. We previously reported that in the absence of t10,c12-CLA, mice forced to lose equivalent body weight by food restriction (FR) do not exhibit increases in fat oxidation or energy expenditure but have improved glucose metabolism, consistent with FR as a metabolically healthy weight-loss method. Objective: Because diet is a primary determinant of gut bacterial populations, we hypothesized that the disparate metabolic effects accompanying weight loss from t10,c12-CLA or FR could be related to altered intestinal microbiota. Methods: Ten-week-old male LDL receptor-deficient (Ldlr-/-) mice were fed a high-fat, high-sucrose diet (HFHS; 36% lard fat, 36.2% sucrose + 0.15% cholesterol) for 12 wk (baseline), then switched to the HFHS diet alone (obese control), HFHS + 1% c9,t11-CLA (obese fatty acid control), HFHS + 1% t10,c12-CLA (weight-loss-inducing fatty acid), or HFHS + FR (weight-loss control group with 75-85% ad libitum HFHS food intake) for a further 8 wk. Fecal microbial content, short-chain fatty acids (butyrate, acetate), tissue CLA concentrations, and intestinal nutrient transporter expression were quantified. Results: Mice fed t10,c12-CLA or assigned to FR lost 14.5% of baseline body weight. t10,c12-CLA-fed mice had elevated concentrations of fecal butyrate (2-fold) and plasma acetate (1.5-fold) compared with HFHS-fed controls. Fecal α diversity decreased by 7.6-14% in all groups. Butyrivibrio and Roseburia, butyrate-producing microbes, were enriched over time by t10,c12-CLA. By comparing with each control group, we also identified bacterial genera significantly enriched in the t10,c12-CLA recipients, including Lactobacillus, Actinobacteria, and the newly identified Ileibacterium valens of the Allobaculum genus, whereas other taxa were enriched by FR, including Clostridiales and Bacteroides. Conclusion: Modalities resulting in equivalent weight loss but with divergent metabolic effects are associated with compositional differences in the mouse intestinal microbiota.


Assuntos
Restrição Calórica , Colo/microbiologia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Linoleicos Conjugados/uso terapêutico , Obesidade/terapia , Redução de Peso/efeitos dos fármacos , Ácido Acético/metabolismo , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácido Butírico/metabolismo , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Redutora , Ingestão de Energia , Fezes/química , Fezes/microbiologia , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Masculino , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Obesidade/microbiologia , Receptores de LDL/metabolismo , Redução de Peso/fisiologia
13.
J Lipid Res ; 58(7): 1471-1481, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539357

RESUMO

A glutamate-to-lysine variant (rs58542926-T) in transmembrane 6 superfamily member 2 (TM6SF2) is associated with increased fatty liver disease and diabetes in conjunction with decreased cardiovascular disease risk. To identify mediators of the effects of TM6SF2, we tested for associations between rs58542926-T and serum lipoprotein/metabolite measures in cross-sectional data from nondiabetic statin-naïve participants. We identified independent associations between rs58542926-T and apoB-100 particles (ß = -0.057 g/l, P = 1.99 × 10-14) and tyrosine levels (ß = 0.0020 mmol/l, P = 1.10 × 10-8), controlling for potential confounders, in 6,929 Finnish men. The association between rs58542926-T and apoB-100 was confirmed in an independent sample of 2,196 Finnish individuals from the FINRISK study (ßreplication = -0.029, Preplication = 0.029). Secondary analyses demonstrated an rs58542926-T dose-dependent decrease in particle concentration, cholesterol, and triglyceride (TG) content for VLDL and LDL particles (P < 0.001 for all). No significant associations between rs58542926-T and HDL measures were observed. TM6SF2 SNP rs58542926-T and tyrosine levels were associated with increased incident T2D risk in both METSIM and FINRISK. Decreased liver production/secretion of VLDL, decreased cholesterol and TGs in VLDL/LDL particles in serum, and increased tyrosine levels identify possible mechanisms by which rs58542926-T exerts its effects on increasing risk of fatty liver disease, decreasing cardiovascular disease, and increasing diabetes risk, respectively.


Assuntos
Apolipoproteína B-100/sangue , Genótipo , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Tirosina/sangue , Estudos Transversais , Feminino , Finlândia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
14.
J Biol Chem ; 291(26): 13715-29, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129239

RESUMO

Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.


Assuntos
Ácido Aspártico/análogos & derivados , Glutamina/metabolismo , Neoplasias Inflamatórias Mamárias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Ácido Aspártico/biossíntese , Ácido Aspártico/genética , Linhagem Celular Tumoral , Feminino , Glutamina/genética , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Proteínas de Neoplasias/genética , Proteínas rho de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 537-551, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27890529

RESUMO

We recently showed that the anaplerotic enzyme pyruvate carboxylase (PC) is up-regulated in human breast cancer tissue and its expression is correlated with the late stages of breast cancer and tumor size [Phannasil et al., PloS One 10, e0129848, 2015]. In the current study we showed that PC enzyme activity is much higher in the highly invasive breast cancer cell line MDA-MB-231 than in less invasive breast cancer cell lines. We generated multiple stable PC knockdown cell lines from the MDA-MB-231 cell line and used mass spectrometry with 13C6-glucose and 13C5-glutamine to discern the pathways that use PC in support of cell growth. Cells with severe PC knockdown showed a marked reduction in viability and proliferation rates suggesting the perturbation of pathways that are involved in cancer invasiveness. Strong PC suppression lowered glucose incorporation into downstream metabolites of oxaloacetate, the product of the PC reaction, including malate, citrate and aspartate. Levels of pyruvate, lactate, the redox partner of pyruvate, and acetyl-CoA were also lower suggesting the impairment of mitochondrial pyruvate cycles. Serine, glycine and 5-carbon sugar levels and flux of glucose into fatty acids were decreased. ATP, ADP and NAD(H) levels were unchanged indicating that PC suppression did not significantly affect mitochondrial energy production. The data indicate that the major metabolic roles of PC in invasive breast cancer are primarily anaplerosis, pyruvate cycling and mitochondrial biosynthesis of precursors of cellular components required for breast cancer cell growth and replication.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Redes e Vias Metabólicas , Invasividade Neoplásica/patologia , Piruvato Carboxilase/metabolismo , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Vias Biossintéticas , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ácido Cítrico/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glicina/metabolismo , Glicólise , Humanos , Ácido Láctico/metabolismo , Malatos/metabolismo , Espectrometria de Massas , Invasividade Neoplásica/genética , Nucleotídeos/metabolismo , Piruvato Carboxilase/genética , Ácido Pirúvico/metabolismo , Serina/metabolismo
16.
Physiol Genomics ; 48(11): 816-825, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637250

RESUMO

Intrinsic aerobic exercise capacity can influence many complex traits including obesity and aging. To study this connection we established two rat lines by divergent selection of untrained aerobic capacity. After 32 generations the high capacity runners (HCR) and low capacity runners (LCR) differed in endurance running distance and body fat, blood glucose, other health indicators, and natural life span. To understand the interplay among genetic differences, chronological age, and acute exercise we performed microarray-based gene expression analyses in skeletal muscle with a 2×2×2 design to simultaneously compare HCR and LCR, old and young animals, and rest and exhaustion. Transcripts for mitochondrial function are expressed higher in HCRs than LCRs at both rest and exhaustion and for both age groups. Expression of cell adhesion and extracellular matrix genes tend to decrease with age. This and other age effects are more prominent in LCRs than HCRs, suggesting that HCRs have a slower aging process and this may be partly due to their better metabolic health. Strenuous exercise mainly affects transcription regulation and cellular response. The effects of any one factor often depend on the other two. For example, there are ∼140 and ∼110 line-exercise "interacting" genes for old and young animals, respectively. Many genes highlighted in our study are consistent with prior reports, but many others are novel. The gene- and pathway-level statistics for the main effects, either overall or stratified, and for all possible interactions, represent a rich reference dataset for understanding the interdependence among lines, aging, and exercise.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Feminino , Perfilação da Expressão Gênica , Modelos Animais , Análise de Componente Principal , Ratos
17.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G734-G743, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586649

RESUMO

Total parenteral nutrition (TPN) leads to a shift in small intestinal microbiota with a characteristic dominance of Proteobacteria This study examined how metabolomic changes within the small bowel support an altered microbial community in enterally deprived mice. C57BL/6 mice were given TPN or enteral chow. Metabolomic analysis of jejunal contents was performed by liquid chromatography/mass spectrometry (LC/MS). In some experiments, leucine in TPN was partly substituted with [13C]leucine. Additionally, jejunal contents from TPN-dependent and enterally fed mice were gavaged into germ-free mice to reveal whether the TPN phenotype was transferrable. Small bowel contents of TPN mice maintained an amino acid composition similar to that of the TPN solution. Mass spectrometry analysis of small bowel contents of TPN-dependent mice showed increased concentration of 13C compared with fed mice receiving saline enriched with [13C]leucine. [13C]leucine added to the serosal side of Ussing chambers showed rapid permeation across TPN-dependent jejunum, suggesting increased transmucosal passage. Single-cell analysis by fluorescence in situ hybridization (FISH)-NanoSIMS demonstrated uptake of [13C]leucine by TPN-associated bacteria, with preferential uptake by Enterobacteriaceae Gavage of small bowel effluent from TPN mice into germ-free, fed mice resulted in a trend toward the proinflammatory TPN phenotype with loss of epithelial barrier function. TPN dependence leads to increased permeation of TPN-derived nutrients into the small intestinal lumen, where they are predominately utilized by Enterobacteriaceae The altered metabolomic composition of the intestinal lumen during TPN promotes dysbiosis.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Nutrição Parenteral Total , Sepse/metabolismo , Animais , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Jejuno/microbiologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Sepse/microbiologia
18.
Am J Physiol Heart Circ Physiol ; 311(1): H286-98, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208163

RESUMO

Despite the fact that nucleotides and adenosine help regulate vascular tone through purinergic signaling pathways, little is known regarding their contributions to the pathobiology of pulmonary arterial hypertension, a condition characterized by elevated pulmonary vascular resistance and remodeling. Even less is known about the potential role that alterations in CD39 (ENTPD1), the ectonucleotidase responsible for the conversion of the nucleotides ATP and ADP to AMP, may play in pulmonary arterial hypertension. In this study we identified decreased CD39 expression on the pulmonary endothelium of patients with idiopathic pulmonary arterial hypertension. We next determined the effects of CD39 gene deletion in mice exposed to normoxia or normobaric hypoxia (10% oxygen). Compared with controls, hypoxic CD39(-/-) mice were found to have a markedly elevated ATP-to-adenosine ratio, higher pulmonary arterial pressures, more right ventricular hypertrophy, more arterial medial hypertrophy, and a pro-thrombotic phenotype. In addition, hypoxic CD39(-/-) mice exhibited a marked increase in lung P2X1 receptors. Systemic reconstitution of ATPase and ADPase enzymatic activities through continuous administration of apyrase decreased pulmonary arterial pressures in hypoxic CD39(-/-) mice to levels found in hypoxic CD39(+/+) controls. Treatment with NF279, a potent and selective P2X1 receptor antagonist, lowered pulmonary arterial pressures even further. Our study is the first to implicate decreased CD39 and resultant alterations in circulating purinergic signaling ligands and cognate receptors in the pathobiology of pulmonary arterial hypertension. Reconstitution and receptor blocking experiments suggest that phosphohydrolysis of purinergic nucleotide tri- and diphosphates, or blocking of the P2X1 receptor could serve as treatment for pulmonary arterial hypertension.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/genética , Anti-Hipertensivos/farmacologia , Apirase/deficiência , Apirase/genética , Apirase/farmacologia , Pressão Arterial , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Hidrólise , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/efeitos dos fármacos , Índice de Gravidade de Doença , Transdução de Sinais , Suramina/análogos & derivados , Suramina/farmacologia , Remodelação Vascular , Remodelação Ventricular
19.
J Biol Chem ; 289(19): 13575-88, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24675078

RESUMO

Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in ß cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-(13)C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD(+) ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying ß cell insulin secretion.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicerofosfolipídeos/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Ácidos Graxos/genética , Glucose/genética , Glicerofosfolipídeos/genética , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Metabolismo dos Lipídeos/fisiologia , Metaboloma , Oxirredução , Ratos , Receptores Acoplados a Proteínas G/genética
20.
Blood ; 122(6): 958-68, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23814019

RESUMO

The mechanisms underlying the pathogenesis of the constitutively active tyrosine kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressing anaplastic large cell lymphoma are not completely understood. Here we show using an integrated phosphoproteomic and metabolomic strategy that NPM-ALK induces a metabolic shift toward aerobic glycolysis, increased lactate production, and biomass production. The metabolic shift is mediated through the anaplastic lymphoma kinase (ALK) phosphorylation of the tumor-specific isoform of pyruvate kinase (PKM2) at Y105, resulting in decreased enzymatic activity. Small molecule activation of PKM2 or expression of Y105F PKM2 mutant leads to reversal of the metabolic switch with increased oxidative phosphorylation and reduced lactate production coincident with increased cell death, decreased colony formation, and reduced tumor growth in an in vivo xenograft model. This study provides comprehensive profiling of the phosphoproteomic and metabolomic consequences of NPM-ALK expression and reveals a novel role of ALK in the regulation of multiple components of cellular metabolism. Our studies show that PKM2 is a novel substrate of ALK and plays a critical role in mediating the metabolic shift toward biomass production and tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfoma Anaplásico de Células Grandes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metabolômica , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Proteômica , Especificidade por Substrato , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA