Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7984): 761-766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730996

RESUMO

Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 µm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Incêndios Florestais , Humanos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Material Particulado/análise , Material Particulado/química , Fumaça/análise , Estados Unidos , Incêndios Florestais/estatística & dados numéricos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências
2.
Nature ; 611(7936): 491-495, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36385544

RESUMO

In many regions of the world, sparse data on key economic outcomes inhibit the development, targeting and evaluation of public policy1,2. We demonstrate how advancements in satellite imagery and machine learning (ML) can help ameliorate these data and inference challenges. In the context of an expansion of the electrical grid across Uganda, we show how a combination of satellite imagery and computer vision can be used to develop local-level livelihood measurements appropriate for inferring the causal impact of electricity access on livelihoods. We then show how ML-based inference techniques deliver more reliable estimates of the causal impact of electrification than traditional alternatives when applied to these data. We estimate that grid access improves village-level asset wealth in rural Uganda by up to 0.15 standard deviations, more than doubling the growth rate during our study period relative to untreated areas. Our results provide country-scale evidence on the impact of grid-based infrastructure investment and our methods provide a low-cost, generalizable approach to future policy evaluation in data-sparse environments.

3.
Annu Rev Med ; 75: 277-292, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37738508

RESUMO

We review current knowledge on the trends and drivers of global wildfire activity, advances in the measurement of wildfire smoke exposure, and evidence on the health effects of this exposure. We describe methodological issues in estimating the causal effects of wildfire smoke exposures on health and quantify their importance, emphasizing the role of nonlinear and lagged effects. We conduct a systematic review and meta-analysis of the health effects of wildfire smoke exposure, finding positive impacts on all-cause mortality and respiratory hospitalizations but less consistent evidence on cardiovascular morbidity. We conclude by highlighting priority areas for future research, including leveraging recently developed spatially and temporally resolved wildfire-specific ambient air pollution data to improve estimates of the health effects of wildfire smoke exposure.


Assuntos
Poluição do Ar , Incêndios Florestais , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Hospitalização , Fumaça/efeitos adversos , Fumaça/análise
4.
Proc Natl Acad Sci U S A ; 120(28): e2300395120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37410866

RESUMO

The western United States has experienced severe drought in recent decades, and climate models project increased drought risk in the future. This increased drying could have important implications for the region's interconnected, hydropower-dependent electricity systems. Using power-plant level generation and emissions data from 2001 to 2021, we quantify the impacts of drought on the operation of fossil fuel plants and the associated impacts on greenhouse gas (GHG) emissions, air quality, and human health. We find that under extreme drought, electricity generation from individual fossil fuel plants can increase up to 65% relative to average conditions, mainly due to the need to substitute for reduced hydropower. Over 54% of this drought-induced generation is transboundary, with drought in one electricity region leading to net imports of electricity and thus increased pollutant emissions from power plants in other regions. These drought-induced emission increases have detectable impacts on local air quality, as measured by proximate pollution monitors. We estimate that the monetized costs of excess mortality and GHG emissions from drought-induced fossil generation are 1.2 to 2.5x the reported direct economic costs from lost hydro production and increased demand. Combining climate model estimates of future drying with stylized energy-transition scenarios suggests that these drought-induced impacts are likely to remain large even under aggressive renewables expansion, suggesting that more ambitious and targeted measures are needed to mitigate the emissions and health burden from the electricity sector during drought.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gases de Efeito Estufa , Estados Unidos , Humanos , Poluentes Atmosféricos/análise , Secas , Poluição do Ar/análise , Combustíveis Fósseis , Eletricidade
5.
Proc Natl Acad Sci U S A ; 120(23): e2218210120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253010

RESUMO

Global outdoor biomass burning is a major contributor to air pollution, especially in low- and middle-income countries. Recent years have witnessed substantial changes in the extent of biomass burning, including large declines in Africa. However, direct evidence of the contribution of biomass burning to global health outcomes remains limited. Here, we use georeferenced data on more than 2 million births matched to satellite-derived burned area exposure to estimate the burden of biomass fires on infant mortality. We find that each additional square kilometer of burning is associated with nearly 2% higher infant mortality in nearby downwind locations. The share of infant deaths attributable to biomass fires has increased over time due to the rapid decline in other important causes of infant death. Applying our model estimates across harmonized district-level data covering 98% of global infant deaths, we find that exposure to outdoor biomass burning was associated with nearly 130,000 additional infant deaths per year globally over our 2004 to 2018 study period. Despite the observed decline in biomass burning in Africa, nearly 75% of global infant deaths due to burning still occur in Africa. While fully eliminating biomass burning is unlikely, we estimate that even achievable reductions-equivalent to the lowest observed annual burning in each location during our study period-could have avoided more than 70,000 infant deaths per year globally since 2004.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Lactente , Humanos , Biomassa , Mortalidade Infantil , Morte do Lactente , Mortalidade , Poluentes Atmosféricos/análise
6.
Proc Natl Acad Sci U S A ; 120(51): e2309325120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085772

RESUMO

Rapidly changing wildfire regimes across the Western United States have driven more frequent and severe wildfires, resulting in wide-ranging societal threats from wildfires and wildfire-generated smoke. However, common measures of fire severity focus on what is burned, disregarding the societal impacts of smoke generated from each fire. We combine satellite-derived fire scars, air parcel trajectories from individual fires, and predicted smoke PM2.5 to link source fires to resulting smoke PM2.5 and health impacts experienced by populations in the contiguous United States from April 2006 to 2020. We quantify fire-specific accumulated smoke exposure based on the cumulative population exposed to smoke PM2.5 over the duration of a fire and estimate excess asthma-related emergency department (ED) visits as a result of this exposure. We find that excess asthma visits attributable to each fire are only moderately correlated with common measures of wildfire severity, including burned area, structures destroyed, and suppression cost. Additionally, while recent California fires contributed nearly half of the country's smoke-related excess asthma ED visits during our study period, the most severe individual fire was the 2007 Bugaboo fire in the Southeast. We estimate that a majority of smoke PM2.5 comes from sources outside the local jurisdictions where the smoke is experienced, with 87% coming from fires in other counties and 60% from fires in other states. Our approach could enable broad-scale assessment of whether specific fire characteristics affect smoke toxicity or impact, inform cost-effectiveness assessments for allocation of suppression resources, and help clarify the growing transboundary nature of local air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Incêndios Florestais , Humanos , Estados Unidos/epidemiologia , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Agricultura , Material Particulado/toxicidade
7.
Proc Natl Acad Sci U S A ; 120(34): e2301061120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37582122

RESUMO

Household electrification is thought to be an important part of a carbon-neutral future and could also have additional benefits to adopting households such as improved air quality. However, the effectiveness of specific electrification policies in reducing total emissions and boosting household livelihoods remains a crucial open question in both developed and developing countries. We investigated a transition of more than 750,000 households from gas to electric cookstoves-one of the most popular residential electrification strategies-in Ecuador following a program that promoted induction stoves and assessed its impacts on electricity consumption, greenhouse gas emissions, and health. We estimate that the program resulted in a 5% increase in total residential electricity consumption between 2015 and 2021. By offsetting a commensurate amount of cooking gas combustion, we find that the program likely reduced national greenhouse gas emissions, thanks in part to the country's electricity grid being 80% hydropower in later parts of the time period. Increased induction stove uptake was also associated with declines in all-cause and respiratory-related hospitalizations nationwide. These findings suggest that, when the electricity grid is largely powered by renewables, gas-to-induction cooking transitions represent a promising way of amplifying the health and climate cobenefits of net-carbon-zero policies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Culinária , Eletricidade , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Carbono , Gases de Efeito Estufa , Clima
8.
Proc Natl Acad Sci U S A ; 120(39): e2302409120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722035

RESUMO

Air pollution negatively affects a range of health outcomes. Wildfire smoke is an increasingly important contributor to air pollution, yet wildfire smoke events are highly salient and could induce behavioral responses that alter health impacts. We combine geolocated data covering all emergency department (ED) visits to nonfederal hospitals in California from 2006 to 2017 with spatially resolved estimates of daily wildfire smoke PM[Formula: see text] concentrations and quantify how smoke events affect ED visits. Total ED visits respond nonlinearly to smoke concentrations. Relative to a day with no smoke, total visits increase by 1 to 1.5% in the week following low or moderate smoke days but decline by 6 to 9% following extreme smoke days. Reductions persist for at least a month. Declines at extreme levels are driven by diagnoses not thought to be acutely impacted by pollution, including accidental injuries and several nonurgent symptoms, and declines come disproportionately from less-insured populations. In contrast, health outcomes with the strongest physiological link to short-term air pollution increase dramatically in the week following an extreme smoke day: We estimate that ED visits for asthma, COPD, and cough all increase by 30 to 110%. Data from internet searches, vehicle traffic sensors, and park visits indicate behavioral changes on high smoke days consistent with declines in healthcare utilization. Because low and moderate smoke days vastly outweigh high smoke days, we estimate that smoke was responsible for an average of 3,010 (95% CI: 1,760-4,380) additional ED visits per year 2006 to 2017. Given the increasing intensity of wildfire smoke events, behavioral mediation is likely to play a growing role in determining total smoke impacts.


Assuntos
Poluição do Ar , Asma , Incêndios Florestais , Humanos , Poluição do Ar/efeitos adversos , Tosse , Serviço Hospitalar de Emergência
9.
Nature ; 571(7764): 193-197, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31189956

RESUMO

Research findings on the relationship between climate and conflict are diverse and contested. Here we assess the current understanding of the relationship between climate and conflict, based on the structured judgments of experts from diverse disciplines. These experts agree that climate has affected organized armed conflict within countries. However, other drivers, such as low socioeconomic development and low capabilities of the state, are judged to be substantially more influential, and the mechanisms of climate-conflict linkages remain a key uncertainty. Intensifying climate change is estimated to increase future risks of conflict.


Assuntos
Conflitos Armados/estatística & dados numéricos , Clima , Mudança Climática/estatística & dados numéricos , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Comportamento de Redução do Risco , Fatores Socioeconômicos , Incerteza
10.
Nature ; 559(7713): 254-258, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950722

RESUMO

Poor air quality is thought to be an important mortality risk factor globally1-3, but there is little direct evidence from the developing world on how mortality risk varies with changing exposure to ambient particulate matter. Current global estimates apply exposure-response relationships that have been derived mostly from wealthy, mid-latitude countries to spatial population data4, and these estimates remain unvalidated across large portions of the globe. Here we combine household survey-based information on the location and timing of nearly 1 million births across sub-Saharan Africa with satellite-based estimates5 of exposure to ambient respirable particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) to estimate the impact of air quality on mortality rates among infants in Africa. We find that a 10 µg m-3 increase in PM2.5 concentration is associated with a 9% (95% confidence interval, 4-14%) rise in infant mortality across the dataset. This effect has not declined over the last 15 years and does not diminish with higher levels of household wealth. Our estimates suggest that PM2.5 concentrations above minimum exposure levels were responsible for 22% (95% confidence interval, 9-35%) of infant deaths in our 30 study countries and led to 449,000 (95% confidence interval, 194,000-709,000) additional deaths of infants in 2015, an estimate that is more than three times higher than existing estimates that attribute death of infants to poor air quality for these countries2,6. Upward revision of disease-burden estimates in the studied countries in Africa alone would result in a doubling of current estimates of global deaths of infants that are associated with air pollution, and modest reductions in African PM2.5 exposures are predicted to have health benefits to infants that are larger than most known health interventions.


Assuntos
Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Mapeamento Geográfico , Mortalidade Infantil/tendências , África/epidemiologia , Poluição do Ar/efeitos adversos , Causas de Morte/tendências , Feminino , Humanos , Lactente , Masculino , Idade Materna , Material Particulado/efeitos adversos , Material Particulado/análise , Material Particulado/química , Infecções Respiratórias/mortalidade , Infecções Respiratórias/prevenção & controle , Risco , Vacinas Virais/uso terapêutico
11.
Nature ; 557(7706): 549-553, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795251

RESUMO

International climate change agreements typically specify global warming thresholds as policy targets 1 , but the relative economic benefits of achieving these temperature targets remain poorly understood2,3. Uncertainties include the spatial pattern of temperature change, how global and regional economic output will respond to these changes in temperature, and the willingness of societies to trade present for future consumption. Here we combine historical evidence 4 with national-level climate 5 and socioeconomic 6 projections to quantify the economic damages associated with the United Nations (UN) targets of 1.5 °C and 2 °C global warming, and those associated with current UN national-level mitigation commitments (which together approach 3 °C warming 7 ). We find that by the end of this century, there is a more than 75% chance that limiting warming to 1.5 °C would reduce economic damages relative to 2 °C, and a more than 60% chance that the accumulated global benefits will exceed US$20 trillion under a 3% discount rate (2010 US dollars). We also estimate that 71% of countries-representing 90% of the global population-have a more than 75% chance of experiencing reduced economic damages at 1.5 °C, with poorer countries benefiting most. Our results could understate the benefits of limiting warming to 1.5 °C if unprecedented extreme outcomes, such as large-scale sea level rise 8 , occur for warming of 2 °C but not for warming of 1.5 °C. Inclusion of other unquantified sources of uncertainty, such as uncertainty in secular growth rates beyond that contained in existing socioeconomic scenarios, could also result in less precise impact estimates. We find considerably greater reductions in global economic output beyond 2 °C. Relative to a world that did not warm beyond 2000-2010 levels, we project 15%-25% reductions in per capita output by 2100 for the 2.5-3 °C of global warming implied by current national commitments 7 , and reductions of more than 30% for 4 °C warming. Our results therefore suggest that achieving the 1.5 °C target is likely to reduce aggregate damages and lessen global inequality, and that failing to meet the 2 °C target is likely to increase economic damages substantially.

12.
Nature ; 560(7719): 480-483, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089909

RESUMO

Solar radiation management is increasingly considered to be an option for managing global temperatures1,2, yet the economic effects of ameliorating climatic changes by scattering sunlight back to space remain largely unknown3. Although solar radiation management may increase crop yields by reducing heat stress4, the effects of concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern solar radiation management proposals as natural experiments to provide the first estimates, to our knowledge, of how the stratospheric sulfate aerosols created by the eruptions of El Chichón and Mount Pinatubo altered the quantity and quality of global sunlight, and how these changes in sunlight affected global crop yields. We find that the sunlight-mediated effect of stratospheric sulfate aerosols on yields is negative for both C4 (maize) and C3 (soy, rice and wheat) crops. Applying our yield model to a solar radiation management scenario based on stratospheric sulfate aerosols, we find that projected mid-twenty-first century damages due to scattering sunlight caused by solar radiation management are roughly equal in magnitude to benefits from cooling. This suggests that solar radiation management-if deployed using stratospheric sulfate aerosols similar to those emitted by the volcanic eruptions it seeks to mimic-would, on net, attenuate little of the global agricultural damage from climate change. Our approach could be extended to study the effects of solar radiation management on other global systems, such as human health or ecosystem function.


Assuntos
Biomassa , Produção Agrícola/estatística & dados numéricos , Produtos Agrícolas/efeitos da radiação , Luz Solar , Erupções Vulcânicas/estatística & dados numéricos , Aerossóis/análise , Atmosfera/química , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Oryza , Glycine max , Sulfatos/análise , Triticum , Zea mays
13.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879604

RESUMO

Floods and other climate hazards pose a widespread and growing threat to housing and infrastructure around the world. By reflecting climate risk in prices, markets can discourage excessive development in hazardous areas. However, the extent to which markets price these risks remains poorly understood. Here we measure the effect of information about flood risk contained in regulatory floodplain maps on residential property values in the United States. Using multiple empirical approaches and two decades of sales data covering the universe of homes in the United States, we find little evidence that housing markets fully price information about flood risk in aggregate. However, the price penalty is larger for commercial buyers and in markets where buyers are more risk aware, suggesting that policies to improve risk communication could influence market outcomes. Our findings indicate that houses in flood zones in the United States are currently overvalued by a total of $43.8 billion (95% confidence interval: $32.6 to $55.6 billion) based on the information in publicly available flood hazard maps alone, raising concerns about the stability of real estate markets as climate risks become more salient and severe.

14.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33431652

RESUMO

Precipitation extremes have increased across many regions of the United States, with further increases anticipated in response to additional global warming. Quantifying the impact of these precipitation changes on flood damages is necessary to estimate the costs of climate change. However, there is little empirical evidence linking changes in precipitation to the historically observed increase in flood losses. We use >6,600 reports of state-level flood damage to quantify the historical relationship between precipitation and flood damages in the United States. Our results show a significant, positive effect of both monthly and 5-d state-level precipitation on state-level flood damages. In addition, we find that historical precipitation changes have contributed approximately one-third of cumulative flood damages over 1988 to 2017 (primary estimate 36%; 95% CI 20 to 46%), with the cumulative impact of precipitation change totaling $73 billion (95% CI 39 to $91 billion). Further, climate models show that anthropogenic climate forcing has increased the probability of exceeding precipitation thresholds at the extremely wet quantiles that are responsible for most flood damages. Climate models project continued intensification of wet conditions over the next three decades, although a trajectory consistent with UN Paris Agreement goals significantly curbs that intensification. Taken together, our results quantify the contribution of precipitation trends to recent increases in flood damages, advance estimates of the costs associated with historical greenhouse gas emissions, and provide further evidence that lower levels of future warming are very likely to reduce financial losses relative to the current global warming trajectory.

15.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33431571

RESUMO

Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland-urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM2.5 (particulate matter with diameter <2.5 µm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change-induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change-but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy.


Assuntos
Incêndios Florestais/prevenção & controle , Incêndios Florestais/estatística & dados numéricos , Poluição do Ar/análise , Mudança Climática , Exposição Ambiental , Poluição Ambiental , Incêndios , Humanos , Modelos Estatísticos , Material Particulado/análise , Fatores de Risco , Fumaça/análise , Estados Unidos
16.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888583

RESUMO

Improving compliance with environmental regulations is critical for promoting clean environments and healthy populations. In South Asia, brick manufacturing is a major source of pollution but is dominated by small-scale, informal producers who are difficult to monitor and regulate-a common challenge in low-income settings. We demonstrate a low-cost, scalable approach for locating brick kilns in high-resolution satellite imagery from Bangladesh. Our approach identifies kilns with 94.2% accuracy and 88.7% precision and extracts the precise GPS coordinates of every brick kiln across Bangladesh. Using these estimates, we show that at least 12% of the population of Bangladesh (>18 million people) live within 1 km of a kiln and that 77% and 9% of kilns are (illegally) within 1 km of schools and health facilities, respectively. Finally, we show how kilns contribute up to 20.4 µg/[Formula: see text] of [Formula: see text] (particulate matter of a diameter less than 2.5 µm) in Dhaka when the wind blows from an unfavorable direction. We document inaccuracies and potential bias with respect to local regulations in the government data. Our approach demonstrates how machine learning and Earth observation can be combined to better understand the extent and implications of regulatory compliance in informal industry.


Assuntos
Monitoramento Ambiental/métodos , Fidelidade a Diretrizes/tendências , Processamento de Imagem Assistida por Computador/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Ásia , Bangladesh , Monóxido de Carbono/análise , Conservação dos Recursos Naturais/métodos , Aprendizado Profundo , Poluição Ambiental/análise , Humanos , Indústrias , Material Particulado/análise , Imagens de Satélites/métodos
17.
Environ Sci Technol ; 56(19): 13607-13621, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134580

RESUMO

Smoke from wildfires is a growing health risk across the US. Understanding the spatial and temporal patterns of such exposure and its population health impacts requires separating smoke-driven pollutants from non-smoke pollutants and a long time series to quantify patterns and measure health impacts. We develop a parsimonious and accurate machine learning model of daily wildfire-driven PM2.5 concentrations using a combination of ground, satellite, and reanalysis data sources that are easy to update. We apply our model across the contiguous US from 2006 to 2020, generating daily estimates of smoke PM2.5 over a 10 km-by-10 km grid and use these data to characterize levels and trends in smoke PM2.5. Smoke contributions to daily PM2.5 concentrations have increased by up to 5 µg/m3 in the Western US over the last decade, reversing decades of policy-driven improvements in overall air quality, with concentrations growing fastest for higher income populations and predominantly Hispanic populations. The number of people in locations with at least 1 day of smoke PM2.5 above 100 µg/m3 per year has increased 27-fold over the last decade, including nearly 25 million people in 2020 alone. Our data set can bolster efforts to comprehensively understand the drivers and societal impacts of trends and extremes in wildfire smoke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluentes Ambientais/análise , Humanos , Material Particulado/análise , Fumaça/análise
18.
Environ Res ; 203: 111872, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403668

RESUMO

There is limited population-scale evidence on the burden of exposure to wildfire smoke during pregnancy and its impacts on birth outcomes. In order to investigate this relationship, data on every singleton birth in California 2006-2012 were combined with satellite-based estimates of wildfire smoke plume boundaries and high-resolution gridded estimates of surface PM2.5 concentrations and a regression model was used to estimate associations with preterm birth risk. Results suggest that each additional day of exposure to any wildfire smoke during pregnancy was associated with an 0.49 % (95 % CI: 0.41-0.59 %) increase in risk of preterm birth (<37 weeks). At sample median smoke exposure (7 days) this translated to a 3.4 % increase in risk, relative to an unexposed mother. Estimates by trimester suggest stronger associations with exposure later in pregnancy and estimates by smoke intensity indicate that observed associations were driven by higher intensity smoke-days. Exposure to low intensity smoke-days had no association with preterm birth while an additional medium (smoke PM2.5 5-10 µg/m3) or high (smoke PM2.5 > 10 µg/m3) intensity smoke-day was associated with an 0.95 % (95 % CI: 0.47-1.42 %) and 0.82 % (95 % CI: 0.41-1.24 %) increase in preterm risk, respectively. In contrast to previous findings for other pollution types, neither exposure to smoke nor the relative impact of smoke on preterm birth differed by race/ethnicity or income in our sample. However, impacts differed greatly by baseline smoke exposure, with mothers in regions with infrequent smoke exposure experiencing substantially larger impacts from an additional smoke-day than mothers in regions where smoke is more common. We estimate 6,974 (95 % CI: 5,513-8,437) excess preterm births attributable to wildfire smoke exposure 2007-2012, accounting for 3.7 % of observed preterm births during this period. Our findings have important implications for understanding the costs of growing wildfire smoke exposure, and for understanding the benefits of smoke mitigation measures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nascimento Prematuro , Incêndios Florestais , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , California/epidemiologia , Feminino , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Gravidez , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Fumaça/efeitos adversos
19.
Proc Natl Acad Sci U S A ; 116(20): 9808-9813, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31010922

RESUMO

Understanding the causes of economic inequality is critical for achieving equitable economic development. To investigate whether global warming has affected the recent evolution of inequality, we combine counterfactual historical temperature trajectories from a suite of global climate models with extensively replicated empirical evidence of the relationship between historical temperature fluctuations and economic growth. Together, these allow us to generate probabilistic country-level estimates of the influence of anthropogenic climate forcing on historical economic output. We find very high likelihood that anthropogenic climate forcing has increased economic inequality between countries. For example, per capita gross domestic product (GDP) has been reduced 17-31% at the poorest four deciles of the population-weighted country-level per capita GDP distribution, yielding a ratio between the top and bottom deciles that is 25% larger than in a world without global warming. As a result, although between-country inequality has decreased over the past half century, there is ∼90% likelihood that global warming has slowed that decrease. The primary driver is the parabolic relationship between temperature and economic growth, with warming increasing growth in cool countries and decreasing growth in warm countries. Although there is uncertainty in whether historical warming has benefited some temperate, rich countries, for most poor countries there is >90% likelihood that per capita GDP is lower today than if global warming had not occurred. Thus, our results show that, in addition to not sharing equally in the direct benefits of fossil fuel use, many poor countries have been significantly harmed by the warming arising from wealthy countries' energy consumption.

20.
Nature ; 527(7577): 235-9, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26503051

RESUMO

Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.


Assuntos
Clima , Aquecimento Global/economia , Internacionalidade , Modelos Econômicos , Dinâmica não Linear , Temperatura , Agricultura/economia , Agricultura/estatística & dados numéricos , Países Desenvolvidos/economia , Países em Desenvolvimento/economia , Eficiência , Renda/estatística & dados numéricos , Renda/tendências , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA