Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 87(7): 3885-902, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365422

RESUMO

The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo.


Assuntos
Redes Reguladoras de Genes/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Primers do DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Pulmão/citologia , Análise em Microsséries , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Biologia de Sistemas/métodos
2.
Virus Res ; 133(1): 33-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17451829

RESUMO

SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The severe and sudden onset of symptoms, resulting in an atypical pneumonia with dry cough and persistent high fever in cases of severe acute respiratory virus brought to light the importance of coronaviruses as potentially lethal human pathogens and the identification of several zoonotic reservoirs has made the reemergence of new strains and future epidemics all the more possible. In this chapter, we describe the pathology of SARS-CoV infection in humans and explore the use of two models of the human conducting airway to develop a better understanding of the replication and pathogenesis of SARS-CoV in relevant in vitro systems. The first culture model is a human bronchial epithelial cell line Calu-3 that can be inoculated by viruses either as a non-polarized monolayer of cells or polarized cells with tight junctions and microvilli. The second model system, derived from primary cells isolated from human airway epithelium and grown on Transwells, form a pseudostratified mucociliary epithelium that recapitulates the morphological and physiological features of the human conducting airway in vivo. Experimental results using these lung epithelial cell models demonstrate that in contrast to the pathology reported in late stage cases SARS-CoV replicates to high titers in epithelial cells of the conducting airway. The SARS-CoV receptor, human angiotensin 1 converting enzyme 2 (hACE2), was detected exclusively on the apical surface of cells in polarized Calu-3 cells and human airway epithelial cultures (HAE), indicating that hACE2 was accessible by SARS-CoV after lumenal airway delivery. Furthermore, in HAE, hACE2 was exclusively localized to ciliated airway epithelial cells. In support of the hACE2 localization data, the most productive route of inoculation and progeny virion egress in both polarized Calu-3 and ciliated cells of HAE was the apical surface suggesting mechanisms to release large quantities of virus into the lumen of the human lung. Preincubation of the apical surface of cultures with antisera directed against hACE2 reduced viral titers by two logs while antisera against DC-SIGN/DC-SIGNR did not reduce viral replication levels suggesting that hACE2 is the primary receptor for entry of SARS-CoV into the ciliated cells of HAE cultures. To assess infectivity in ciliated airway cultures derived from susceptible animal species we generated a recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF 7a/7b) and insertion of the green fluorescent protein (GFP) resulting in SARS-CoV GFP. SARS-CoV GFP replicated to similar titers as wild type viruses in Vero E6, MA104, and CaCo2 cells. In addition, SARS-CoV replication in airway epithelial cultures generated from Golden Syrian hamster tracheas reached similar titers to the human cultures by 72 h post-infection. Efficient SARS-CoV infection of ciliated cell-types in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.


Assuntos
Células Epiteliais/virologia , Sistema Respiratório/virologia , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Replicação Viral , Enzima de Conversão de Angiotensina 2 , Animais , Células CACO-2 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Humanos , Pulmão/virologia , Macaca mulatta , Mesocricetus , Camundongos , Peptidil Dipeptidase A/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/crescimento & desenvolvimento , Células Vero , Internalização do Vírus
4.
J Virol ; 79(24): 15511-24, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306622

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.


Assuntos
Infecções por Coronavirus/metabolismo , Células Epiteliais/virologia , Pulmão/virologia , Síndrome Respiratória Aguda Grave/patologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Enzima de Conversão de Angiotensina 2 , Carboxipeptidases/análise , Infecções por Coronavirus/enzimologia , Humanos , Peptidil Dipeptidase A , Síndrome Respiratória Aguda Grave/virologia
5.
J Immunol ; 170(8): 4201-8, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12682253

RESUMO

Previous work has shown that dendritic cells (DCs) express specific chemokine receptors that allow for coordinated movement in vivo. To test the in vivo relevance of this, we used a murine melanoma system and knockout mice to investigate the function of the chemokine receptor CCR5 and its ligands, CCR ligand (CCL)3 and CCL5. We found that the lack of CCR5 in the host mouse resulted in delayed tumor growth, but this effect was overcome at a higher tumor load. With the administration of tumor charged DCs, CCR5(-/-) mice that had previously been injected with tumor were completely protected from tumor. This effect was dependent on the dose of tumor cells and the expression of CCR5 on the DC and its absence in the host. In contrast, the loss of the CCR5 ligand, CCL3, led to an early delay in tumor growth that did not persist, while the absence of the CCR5 ligand, CCL5, had no effect. Blocking the activity of CCR5 in the host may represent a new strategy for enhancing the activity of a therapeutic melanoma DC vaccine.


Assuntos
Adjuvantes Imunológicos/deficiência , Adjuvantes Imunológicos/fisiologia , Transferência Adotiva/métodos , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Receptores CCR5/deficiência , Receptores CCR5/fisiologia , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Divisão Celular/genética , Divisão Celular/imunologia , Células Cultivadas , Quimiocina CCL3 , Quimiocina CCL4 , Células Dendríticas/citologia , Injeções Subcutâneas , Ligantes , Proteínas Inflamatórias de Macrófagos/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR3 , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA