Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918604

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

2.
Mol Cell ; 70(3): 502-515.e8, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727620

RESUMO

Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes/metabolismo , Fosforilação/fisiologia , Superóxido Dismutase-1/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , Metabolismo Energético/fisiologia , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
3.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38870521

RESUMO

MOTIVATION: Tools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome. RESULTS: We introduce a novel pairwise structure alignment tool (rcsb.org/alignment) that seamlessly integrates into the RCSB Protein Data Bank (RCSB PDB) research-focused RCSB.org web portal. Our tool and its underlying application programming interface (alignment.rcsb.org) empowers users to align several protein chains with a reference structure by providing access to established alignment algorithms (FATCAT, CE, TM-align, or Smith-Waterman 3D). The user-friendly interface simplifies parameter setup and input selection. Within seconds, our tool enables visualization of results in both sequence (1D) and structural (3D) perspectives through the RCSB PDB RCSB.org Sequence Annotations viewer and Mol* 3D viewer, respectively. Users can effortlessly compare structures deposited in the PDB archive alongside more than a million incorporated Computed Structure Models coming from the ModelArchive and AlphaFold DB. Moreover, this tool can be used to align custom structure data by providing a link/URL or uploading atomic coordinate files directly. Importantly, alignment results can be bookmarked and shared with collaborators. By bridging the gap between 1D sequence and 3D structures of proteins, our tool facilitates deeper understanding of complex evolutionary relationships among proteins through comprehensive sequence and structural analyses. AVAILABILITY AND IMPLEMENTATION: The alignment tool is part of the RCSB PDB research-focused RCSB.org web portal and available at rcsb.org/alignment. Programmatic access is available via alignment.rcsb.org. Frontend code has been published at github.com/rcsb/rcsb-pecos-app. Visualization is powered by the open-source Mol* viewer (github.com/molstar/molstar and github.com/molstar/rcsb-molstar) plus the Sequence Annotations in 3D Viewer (github.com/rcsb/rcsb-saguaro-3d).


Assuntos
Algoritmos , Bases de Dados de Proteínas , Proteínas , Alinhamento de Sequência , Software , Proteínas/química , Alinhamento de Sequência/métodos , Conformação Proteica , Interface Usuário-Computador , Biologia Computacional/métodos
4.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420884

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Assuntos
Inteligência Artificial , Bases de Dados de Proteínas , Proteínas , Aprendizado de Máquina , Conformação Proteica , Proteínas/química , Reprodutibilidade dos Testes
5.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34234013

RESUMO

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Assuntos
Bacteriófagos/genética , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Programas de Imunização , Administração por Inalação , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Dependovirus/genética , Armazenamento de Medicamentos , Feminino , Programas de Imunização/métodos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Estudo de Prova de Conceito , Temperatura
6.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511693

RESUMO

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Assuntos
COVID-19 , Vacinas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
7.
Bioinformatics ; 38(12): 3304-3305, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35543462

RESUMO

MOTIVATION: Mapping positional features from one-dimensional (1D) sequences onto three-dimensional (3D) structures of biological macromolecules is a powerful tool to show geometric patterns of biochemical annotations and provide a better understanding of the mechanisms underpinning protein and nucleic acid function at the atomic level. RESULTS: We present a new library designed to display fully customizable interactive views between 1D positional features of protein and/or nucleic acid sequences and their 3D structures as isolated chains or components of macromolecular assemblies. AVAILABILITY AND IMPLEMENTATION: https://github.com/rcsb/rcsb-saguaro-3d. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ácidos Nucleicos , Software , Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Proteínas/química
8.
Bioinformatics ; 38(5): 1452-1454, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864908

RESUMO

MOTIVATION: Membrane proteins are encoded by approximately one fifth of human genes but account for more than half of all US FDA approved drug targets. Thanks to new technological advances, the number of membrane proteins archived in the PDB is growing rapidly. However, automatic identification of membrane proteins or inference of membrane location is not a trivial task. RESULTS: We present recent improvements to the RCSB Protein Data Bank web portal (RCSB PDB, rcsb.org) that provide a wealth of new membrane protein annotations integrated from four external resources: OPM, PDBTM, MemProtMD and mpstruc. We have substantially enhanced the presentation of data on membrane proteins. The number of membrane proteins with annotations available on rcsb.org was increased by ∼80%. Users can search for these annotations, explore corresponding tree hierarchies, display membrane segments at the 1D amino acid sequence level, and visualize the predicted location of the membrane layer in 3D. AVAILABILITY AND IMPLEMENTATION: Annotations, search, tree data and visualization are available at our rcsb.org web portal. Membrane visualization is supported by the open-source Mol* viewer (molstar.org and github.com/molstar/molstar). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas de Membrana , Software , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Sequência de Aminoácidos
9.
PLoS Biol ; 18(8): e3000815, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760062

RESUMO

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Assuntos
Betacoronavirus/crescimento & desenvolvimento , Pesquisa Biomédica/educação , Infecções por Coronavirus/prevenção & controle , Bases de Dados de Proteínas , Medicina nas Artes , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/fisiologia , Pesquisa Biomédica/métodos , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Apresentação de Dados , Humanos , Disseminação de Informação/métodos , Estágios do Ciclo de Vida , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Mucosa Respiratória/virologia , SARS-CoV-2
10.
Nucleic Acids Res ; 49(W1): W431-W437, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33956157

RESUMO

Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Software , Internet , Conformação Proteica
11.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211854

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Proteínas/química , Bioengenharia/métodos , Pesquisa Biomédica/métodos , Biotecnologia/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Substâncias Macromoleculares/metabolismo , Pandemias , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Software , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
J Biol Chem ; 296: 100559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744282

RESUMO

The Protein Data Bank (PDB) is an international core data resource central to fundamental biology, biomedicine, bioenergy, and biotechnology/bioengineering. Now celebrating its 50th anniversary, the PDB houses >175,000 experimentally determined atomic structures of proteins, nucleic acids, and their complexes with one another and small molecules and drugs. The importance of three-dimensional (3D) biostructure information for research and education obtains from the intimate link between molecular form and function evident throughout biology. Among the most prolific consumers of PDB data are biomedical researchers, who rely on the open access resource as the authoritative source of well-validated, expertly curated biostructures. This review recounts how the PDB grew from just seven protein structures to contain more than 49,000 structures of human proteins that have proven critical for understanding their roles in human health and disease. It then describes how these structures are used in academe and industry to validate drug targets, assess target druggability, characterize how tool compounds and other small-molecules bind to drug targets, guide medicinal chemistry optimization of binding affinity and selectivity, and overcome challenges during preclinical drug development. Three case studies drawn from oncology exemplify how structural biologists and open access to PDB structures impacted recent regulatory approvals of antineoplastic drugs.


Assuntos
Bases de Dados de Proteínas , Desenvolvimento de Medicamentos , Descoberta de Drogas , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Sistemas de Liberação de Medicamentos , Armazenamento e Recuperação da Informação , Conformação Proteica
13.
Bioinformatics ; 36(22-23): 5526-5527, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33313665

RESUMO

MOTIVATION: Interoperability between polymer sequences and structural data is essential for providing a complete picture of protein and gene features and helping to understand biomolecular function. RESULTS: Herein, we present two resources designed to improve interoperability between the RCSB Protein Data Bank, the NCBI and the UniProtKB data resources and visualize integrated data therefrom. The underlying tools provide a flexible means of mapping between the different coordinate spaces and an interactive tool allows convenient visualization of the 1-dimensional data over the web. AVAILABILITYAND IMPLEMENTATION: https://1d-coordinates.rcsb.org and https://rcsb.github.io/rcsb-saguaro. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

14.
Glycobiology ; 31(9): 1204-1218, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33978738

RESUMO

Since 1971, the Protein Data Bank (PDB) has served as the single global archive for experimentally determined 3D structures of biological macromolecules made freely available to the global community according to the FAIR principles of Findability-Accessibility-Interoperability-Reusability. During the first 50 years of continuous PDB operations, standards for data representation have evolved to better represent rich and complex biological phenomena. Carbohydrate molecules present in more than 14,000 PDB structures have recently been reviewed and remediated to conform to a new standardized format. This machine-readable data representation for carbohydrates occurring in the PDB structures and the corresponding reference data improves the findability, accessibility, interoperability and reusability of structural information pertaining to these molecules. The PDB Exchange MacroMolecular Crystallographic Information File data dictionary now supports (i) standardized atom nomenclature that conforms to International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) recommendations for carbohydrates, (ii) uniform representation of branched entities for oligosaccharides, (iii) commonly used linear descriptors of carbohydrates developed by the glycoscience community and (iv) annotation of glycosylation sites in proteins. For the first time, carbohydrates in PDB structures are consistently represented as collections of standardized monosaccharides, which precisely describe oligosaccharide structures and enable improved carbohydrate visualization, structure validation, robust quantitative and qualitative analyses, search for dendritic structures and classification. The uniform representation of carbohydrate molecules in the PDB described herein will facilitate broader usage of the resource by the glycoscience community and researchers studying glycoproteins.


Assuntos
Carboidratos , Proteínas , Carboidratos/química , Bases de Dados de Proteínas , Proteínas/química
15.
PLoS Comput Biol ; 16(12): e1008502, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284792

RESUMO

Biochemical and biological functions of proteins are the product of both the overall fold of the polypeptide chain, and, typically, structural motifs made up of smaller numbers of amino acids constituting a catalytic center or a binding site that may be remote from one another in amino acid sequence. Detection of such structural motifs can provide valuable insights into the function(s) of previously uncharacterized proteins. Technically, this remains an extremely challenging problem because of the size of the Protein Data Bank (PDB) archive. Existing methods depend on a clustering by sequence similarity and can be computationally slow. We have developed a new approach that uses an inverted index strategy capable of analyzing >170,000 PDB structures with unmatched speed. The efficiency of the inverted index method depends critically on identifying the small number of structures containing the query motif and ignoring most of the structures that are irrelevant. Our approach (implemented at motif.rcsb.org) enables real-time retrieval and superposition of structural motifs, either extracted from a reference structure or uploaded by the user. Herein, we describe the method and present five case studies that exemplify its efficacy and speed for analyzing 3D structures of both proteins and nucleic acids.


Assuntos
Proteínas/química , Catálise , Análise por Conglomerados , Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação , Ácidos Nucleicos/química , Conformação Proteica
16.
PLoS Comput Biol ; 16(7): e1007970, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639954

RESUMO

Detection of protein structure similarity is a central challenge in structural bioinformatics. Comparisons are usually performed at the polypeptide chain level, however the functional form of a protein within the cell is often an oligomer. This fact, together with recent growth of oligomeric structures in the Protein Data Bank (PDB), demands more efficient approaches to oligomeric assembly alignment/retrieval. Traditional methods use atom level information, which can be complicated by the presence of topological permutations within a polypeptide chain and/or subunit rearrangements. These challenges can be overcome by comparing electron density volumes directly. But, brute force alignment of 3D data is a compute intensive search problem. We developed a 3D Zernike moment normalization procedure to orient electron density volumes and assess similarity with unprecedented speed. Similarity searching with this approach enables real-time retrieval of proteins/protein assemblies resembling a target, from PDB or user input, together with resulting alignments (http://shape.rcsb.org).


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas/química , Algoritmos , Internet , Modelos Moleculares , Modelos Estatísticos , Distribuição Normal , Peptídeos/química , Conformação Proteica , Software
17.
PLoS Comput Biol ; 16(10): e1008247, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075050

RESUMO

3D macromolecular structural data is growing ever more complex and plentiful in the wake of substantive advances in experimental and computational structure determination methods including macromolecular crystallography, cryo-electron microscopy, and integrative methods. Efficient means of working with 3D macromolecular structural data for archiving, analyses, and visualization are central to facilitating interoperability and reusability in compliance with the FAIR Principles. We address two challenges posed by growth in data size and complexity. First, data size is reduced by bespoke compression techniques. Second, complexity is managed through improved software tooling and fully leveraging available data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallographic Information File (CIF) format files that maintains full compatibility to related data schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two versus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides even better compression-factor ten and four versus CIF files and gzipped CIF files, respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools enable lightweight, efficient, and extensible handling of 3D macromolecular structural data.


Assuntos
Cristalografia/métodos , Compressão de Dados/métodos , Modelos Moleculares , Software , Bases de Dados de Compostos Químicos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura
19.
Nucleic Acids Res ; 47(D1): D464-D474, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357411

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, rcsb.org), the US data center for the global PDB archive, serves thousands of Data Depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without usage restrictions to more than 1 million rcsb.org Users worldwide and 600 000 pdb101.rcsb.org education-focused Users around the globe. PDB Data Depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy and 3D electron microscopy. PDB Data Consumers include researchers, educators and students studying Fundamental Biology, Biomedicine, Biotechnology and Energy. Recent reorganization of RCSB PDB activities into four integrated, interdependent services is described in detail, together with tools and resources added over the past 2 years to RCSB PDB web portals in support of a 'Structural View of Biology.'


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Pesquisa Biomédica/educação , Biotecnologia/educação , Curadoria de Dados , Software
20.
PLoS Comput Biol ; 15(2): e1006791, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735498

RESUMO

BioJava is an open-source project that provides a Java library for processing biological data. The project aims to simplify bioinformatic analyses by implementing parsers, data structures, and algorithms for common tasks in genomics, structural biology, ontologies, phylogenetics, and more. Since 2012, we have released two major versions of the library (4 and 5) that include many new features to tackle challenges with increasingly complex macromolecular structure data. BioJava requires Java 8 or higher and is freely available under the LGPL 2.1 license. The project is hosted on GitHub at https://github.com/biojava/biojava. More information and documentation can be found online on the BioJava website (http://www.biojava.org) and tutorial (https://github.com/biojava/biojava-tutorial). All inquiries should be directed to the GitHub page or the BioJava mailing list (http://lists.open-bio.org/mailman/listinfo/biojava-l).


Assuntos
Biologia Computacional/métodos , Acesso à Informação , Algoritmos , Biblioteca Gênica , Genoma/genética , Genômica , Armazenamento e Recuperação da Informação , Internet , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA