Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 153(9): 2598-2611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423385

RESUMO

BACKGROUND: Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES: We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS: Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS: Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION: Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.


Assuntos
Lactoferrina , Leite Humano , Recém-Nascido , Humanos , Leite Humano/microbiologia , Viabilidade Microbiana , Fator A de Crescimento do Endotélio Vascular , Pasteurização/métodos , Imunoglobulina A , Imunoglobulina M , Elastase Pancreática
2.
JDS Commun ; 3(2): 91-96, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36339734

RESUMO

Rework is a common practice used in the dairy industry as a strategy to help minimize waste from processing steps or errors that might otherwise render the product unsaleable. Dairy processors may rework their high-temperature, short-time (HTST) fluid milk products up to code date (21 d) at a typical dilution rate of ≤20% rework into ≥80% fresh raw milk. Bacterial spores present in raw milk that can survive pasteurization and grow at refrigeration temperatures are often responsible for milk spoilage. However, the potential impact of growth and thermal resistance of organisms in reworked product has not been investigated. Our objective was to characterize growth, sporulation, and thermal resistance of Paenibacillus odorifer under conditions representative of extreme storage conditions (time and temperature) of reduced fat (2%) and chocolate milk to evaluate whether product containing rework would have a reduced shelf life. Commercial UHT-pasteurized 2% milk and chocolate milk were independently inoculated with 4 strains of P. odorifer at 1 to 2 log cfu/mL and stored at 4°C and 7°C for 30 d. Changes in P. odorifer cell densities were determined by standard serial dilution with spread plating on tryptic soy agar with yeast extract and incubation at 25°C for 48 h. Spore counts were determined following thermal treatment at 80°C for 12 min. Thermal resistance of a cocktail of P. odorifer in milk was determined after treatments at 63°C for 30 min and 72°C for 15 s. Strains of P. odorifer grew rapidly at 7°C and reached a maximum cell density of ~8 log cfu/g in both 2% and chocolate milk within 12 d. All strains grew more slowly at 4°C and had not reached maximum cell density by 21 d. With extreme temperature abuse (25°C, 24 h), P. odorifer will sporulate in milk; however, thermally resistant subpopulations, including spores, did not develop in milk at 4°C until after stationary phase was achieved (>24 d). Vegetative cells of P. odorifer were verified to be sensitive to pasteurization (>7 log reduction); therefore, P. odorifer would not be expected to contribute to reduced shelf life of fluid milk products containing rework, even with extended storage before rework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA