Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Oecologia ; 200(1-2): 247-257, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36129577

RESUMO

Even though drought impacts on tree physiology have been identified, whether drought affects leaf litter chemistry that, in turn, influences litter decay rates is still poorly understood. We compared litter quality and decomposition for two cohorts of leaves from five co-occurring seasonally deciduous tree species: Acer saccharum, Tilia americana, Quercus rubra, Quercus alba, and Ostrya virginiana. One cohort experienced a growing-season drought, and the other cohort came from the same trees in the ensuing, post-drought growing season. Leaf litter production was greater for drought litter than post-drought litter for all five species. Specific leaf area and nitrogen concentrations were 20% greater for the drought cohort than the post-drought cohort. Concentrations of non-structural carbohydrates were about 14% greater for the drought cohort, except for greater values for post-drought A. saccharum litter. Pectin in the middle lamella of leaf litter was 31% lower for the drought cohort compared to post-drought cohort. We found few differences in litter decay rates between drought and post-drought cohorts, although Q. rubra litter had more decomposition for the post-drought cohort than the drought cohort, whereas A. saccharum litter had more decomposition for the drought cohort than the post-drought cohort. Leaf litter decay rates for the drought cohort were related to litter nitrogen and lignin concentrations, whereas decay rates for the post-drought cohort were related to litter carbohydrate concentrations. Our findings suggest that the role of drought events on seasonally deciduous forest ecosystems must recognize species-specific, idiosyncratic responses in leaf litter quality and decomposition.


Assuntos
Ecossistema , Quercus , Secas , Florestas , Humanos , Lignina/análise , Nitrogênio/análise , Pectinas/análise , Folhas de Planta/química , Árvores/fisiologia
2.
Parasitology ; 146(6): 781-790, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30638173

RESUMO

The blacklegged tick (Ixodes scapularis) spends up to 10 months in the soil between feeding as larvae and questing for hosts as nymphs the following year. We tracked the survival and energy use of 4320 engorged larvae evenly divided across 288 microcosms under field conditions from September to July on sites with high (>12 nymphs/150 m2) and low (<1.2 nymphs/150 m2) densities of naturally questing I. scapularis in New York State. Subsets of microcosms were destructively sampled periodically during this period to determine tick survivorship and physiological age. Across all sites tick mortality was low during the winter and increased in the spring and early summer, coincident with increasing energy use. Neither energy use nor mortality differed significantly between sites with high vs low natural tick density, but we did observe a significant positive relationship between soil organic matter content and the survival of I. scapularis during the spring. Our results suggest that the off-host mortality and energy use of I. scapularis nymphs is relatively low in the winter and increases significantly in the spring and early summer.


Assuntos
Metabolismo Energético , Ixodes/fisiologia , Ninfa/fisiologia , Estações do Ano , Solo/parasitologia , Animais , New York , Análise de Sobrevida
3.
Parasit Vectors ; 17(1): 50, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303091

RESUMO

BACKGROUND: The majority of vector-borne disease cases in the USA are caused by pathogens spread by ticks, most commonly the blacklegged tick, Ixodes scapularis. Personal protection against tick bites, including use of repellents, is the primary defense against tick-borne diseases. Tick repellents registered by the Environmental Protection Agency (EPA) are well documented to be safe as well as effective against ticks. Another group of tick repellent products, 25(b) exempt or minimum risk products, use alternative, mostly botanically derived, active ingredients. These are considered to pose minimal risk to human health and therefore are exempt from EPA registration; efficacy testing is not mandated for these products. METHODS: We used a finger bioassay to evaluate the repellency against I. scapularis nymphs for 11 formulated 25(b) exempt products together with two positive control DEET-based EPA registered products. Repellency was assessed hourly from 0.5 to 6.5 h after product application. RESULTS: The DEET-based products showed ≥ 97% repellency for all examined timepoints. By contrast, an average of 63% of ticks were repelled in the first 1.5 h after application across the 11 25(b) exempt products, and the average fell to 3% repelled between 2.5 and 6.5 h. Ten of the 11 25(b) exempt products showed statistically similar efficacy to DEET-based products at 30 min after application (repellency of 79-97%). However, only four 25(b) exempt products maintained a level of repellency similar to DEET-based products (> 72%) at the 1.5-h mark, and none of these products were effective in repelling ticks at the timepoints from 2.5 to 6.5 h after application. CONCLUSIONS: Neither the claims on the labels nor specific active ingredients and their concentrations appeared to predict the duration of efficacy we observed for the 25(b) exempt products. These products are not registered with the EPA, so the methods used to determine the application guidelines on their labels are unclear. Consumers should be aware that both the level of efficacy and the duration of repellency may differ among unregulated 25(b) exempt repellent products labeled for use against ticks. We encourage more research on these products and the 25(b) exempt active ingredients they contain to help determine and improve their efficacy as repellents under different conditions.


Assuntos
Repelentes de Insetos , Ixodes , Picadas de Carrapatos , Animais , Humanos , DEET/farmacologia , Repelentes de Insetos/farmacologia , Ninfa , Bioensaio/métodos
4.
J Med Entomol ; 60(3): 590-603, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37052414

RESUMO

Understanding the distribution of infected ticks is informative for the estimation of risk for tickborne diseases. The blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is the primary vector for 7 medically significant pathogens in United States. However, knowledge of the ranges of these pathogens in host-seeking ticks is incomplete, particularly for those occurring at low prevalence. To aid in prioritizing costly field sampling efforts, we estimated ranges of suitable habitat for Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi in the eastern United States based on existing county-level surveillance records. The resulting suitability maps were compared against those developed previously for Bo. burgdorferi s.s., which shares similar ecology but has been detected in a greater number of counties. The overall accuracy of the habitat suitability models was high (AUC ≥ 0.92) for all 4 pathogens. The most important predictors were related to temperature and moisture. The upper midwestern and northeastern states were predicted to be highly suitable for all 4 pathogens. Based on our models, we prioritized sampling in 431, 275, and 539 counties currently lacking pathogen records that our models classified as suitable for A. phagocytophilum, Ba. microti, and Bo. miyamotoi, respectively. As a second-tier priority, we identified 311 (A. phagocytophilum), 590 (Ba. microti), and 252 (Bo. miyamotoi) counties, based on high suitability scores for Bo. burgdorferi. Our models can be used to improve cost-effectiveness of field sampling efforts aimed at improving accuracy and completeness of pathogen distribution maps.


Assuntos
Anaplasma phagocytophilum , Anaplasmataceae , Babesia microti , Borrelia burgdorferi , Ixodes , Ixodidae , Piroplasmida , Spirochaetaceae , Estados Unidos , Animais , Rickettsiales , Ecossistema
5.
J Med Entomol ; 60(4): 769-777, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37075475

RESUMO

As the primary vector of Lyme disease spirochetes and several other medically significant pathogens, Ixodes scapularis presents a threat to public health in the United States. The incidence of Lyme disease is growing rapidly in upper midwestern states, particularly Michigan, Minnesota, and Wisconsin. The probability of a tick bite, acarological risk, is affected by the phenology of host-seeking I. scapularis. Phenology has been well-studied in northeastern states, but not in the Upper Midwest. We conducted biweekly drag sampling across 4 woodland sites in Minnesota between April and November from 2015 to 2017. The majority of ticks collected were I. scapularis (82%). Adults were active throughout our entire 8-month collection season, with sporadic activity during the summer, larger peaks in activity observed in April, and less consistent and lower peaks observed in October. Nymphs were most active from May through August, with continuing low-level activity in October, and peak activity most commonly observed in June. The observed nymphal peak corresponded with the typical peak in reported human Lyme disease and anaplasmosis cases. These findings are consistent with previous studies from the Upper Midwest and highlight a risk of human exposure to I. scapularis at least from April through November. This information may aid in communicating the seasonality of acarological risk for those living in Minnesota and other upper midwestern states as well as being relevant to the assessment of the ecoepidemiology of Lyme disease and the modeling of transmission dynamics.


Assuntos
Ixodes , Ixodidae , Doença de Lyme , Animais , Humanos , Estações do Ano , Minnesota/epidemiologia , Doença de Lyme/epidemiologia
6.
Parasit Vectors ; 16(1): 228, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430360

RESUMO

BACKGROUND: Numerous bioassay methods have been used to test the efficacy of repellents for ticks, but the comparability of results across different methods has only been evaluated in a single study. Of particular interest are comparisons between bioassays that use artificial containers (in vitro) with those conducted on a human subject (in vivo) for efficacy testing of new potential unregistered active ingredients, which most commonly use in vitro methods. METHODS: We compared four different bioassay methods and evaluated three ingredients (DEET [N,N-Diethyl-meta-toluamide], peppermint oil and rosemary oil) and a negative control (ethanol) over a 6-h period. Two of the methods tested were in vivo bioassay methods in which the active ingredient was applied to human skin (finger and forearm bioassays), and the other two methods were in vitro methods using artificial containers (jar and petri dish bioassays). All four bioassays were conducted using Ixodes scapularis nymphs. We compared the results using nymphs from two different tick colonies that were derived from I. scapularis collected in the US states of Connecticut and Rhode Island (northern origin) and Oklahoma (southern origin), expecting that ticks of different origin would display differences in host-seeking behavior. RESULTS: The results between bioassay methods did not differ significantly, even when comparing those that provide the stimulus of human skin with those that do not. We also found that tick colony source can impact the outcome of repellency bioassays due to differences in movement speed; behavioral differences were incorporated into the assay screening. DEET effectively repelled nymphs for the full 6-h duration of the study. Peppermint oil showed a similar repellent efficacy to DEET during the first hour, but it decreased sharply afterwards. Rosemary oil did not effectively repel nymphs across any of the time points. CONCLUSIONS: The repellency results did not differ significantly between the four bioassay methods tested. The results also highlight the need to consider the geographic origin of ticks used in repellency bioassays in addition to species and life stage. Finally, our results indicate a limited repellent efficacy of the two essential oils tested, which highlights the need for further studies on the duration of repellency for similar botanically derived active ingredients and for evaluation of formulated products.


Assuntos
Repelentes de Insetos , Ixodes , Humanos , Animais , DEET/farmacologia , Bioensaio , Connecticut , Etanol , Repelentes de Insetos/farmacologia , Ninfa
7.
Ticks Tick Borne Dis ; 13(5): 102000, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785605

RESUMO

Lyme disease is the most commonly reported vector-borne disease in the United States (US), with approximately 300,000 -to- 40,000 cases reported annually. The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease-causing spirochete, Borrelia burgdorferi sensu stricto, in high incidence regions in the upper midwestern and northeastern US. Using county-level records of the presence of I. scapularis or presence of B. burgdorferi s.s. infected host-seeking I. scapularis, we generated habitat suitability consensus maps based on an ensemble of statistical models for both acarological risk metrics. Overall accuracy of these suitability models was high (AUC = 0.76 for I. scapularis and 0.86 for B. burgdorferi s.s. infected-I. scapularis). We sought to compare which acarological risk metric best described the distribution of counties reporting high Lyme disease incidence (≥10 confirmed cases/100,000 population) by setting the models to a fixed omission rate (10%). We compared the percent of high incidence counties correctly classified by the two models. The I. scapularis consensus map correctly classified 53% of high and low incidence counties, while the B. burgdorferi s.s. infected-I. scapularis consensus map classified 83% correctly. Counties classified as suitable by the B. burgdorferi s.s. map showed a 91% overlap with high Lyme disease incidence counties with over a 38-fold difference in Lyme disease incidence between high- and low-suitability counties. A total of 288 counties were classified as highly suitable for B. burgdorferi s.s., but lacked records of infected-I. scapularis and were not classified as high incidence. These counties were considered to represent a leading edge for B. burgdorferi s.s. infection in ticks and humans. They clustered in Illinois, Indiana, Michigan, and Ohio. This information can aid in targeting tick surveillance and prevention education efforts in counties where Lyme disease risk may increase in the future.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ecossistema , Humanos , Incidência , Doença de Lyme/epidemiologia , Estados Unidos/epidemiologia
8.
J Med Entomol ; 59(3): 903-910, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35289899

RESUMO

The control of medically important container-inhabiting mosquitoes is an ongoing challenge for mosquito control operations. Truck-mounted application equipment is a common option for rapid areawide larvicide deployment utilized by mosquito control operations. We tested the effectiveness of two truck-mounted sprayers (A1 Super Duty + Buffalo Turbine CSM3), for the deployment of water-dispersible biopesticides (VectoBac WDG:VectoLex WDG 50:50). Sixty residences within four residential neighborhoods in New Jersey were treated in 2019 and 2020. Three empty bioassay cups were placed in specific locations on each property (front yard/ back yard/ side of house), with an additional cup placed in an adjacent catch basin. This approach was replicated in two untreated control neighborhoods. Following larvicide application, cups were subjected to bioassays wherein larval mortality was tracked through adult eclosion. Overall, average larval mortality rates were 56% higher in treated cups compared against untreated controls. Mortality rates were affected by cup location, with 39% mortality in bioassay cups from back yards, 54% in those from the sides of houses, 73% in front yards, and 76% from cups in catch basins. Mortality did not differ significantly between the four treated neighborhoods, nor by the type of sprayer used. Our research shows that truck-mounted sprayers can be an effective method for larvicide deployment in residential neighborhoods, but effectiveness may depend upon the location of the target treatment area in relation to residences and other geographic obstacles.


Assuntos
Aedes , Inseticidas , Animais , Búfalos , Larva , Controle de Mosquitos/métodos , Características de Residência
9.
J Med Entomol ; 58(4): 1966-1969, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822135

RESUMO

Pesticide resistance in medically significant disease vectors can negatively impact the efficacy of control efforts. Resistance research on ticks has focused primarily on species of veterinary significance that experience relatively high degrees of control pressure. Resistance in tick vectors of medical significance has received little attention, in part because area-wide pesticide applications are not used to control these generalist tick species. One of the few effective methods currently used for area-wide control of medically important ticks, including Ixodes scapularis Say (Acari: Ixodidae), is deployment of 4-poster devices. Deer self-apply a topical acaricide (permethrin) while feeding on corn from the devices. A 4-poster program using permethrin has been deployed on Shelter Island, NY to control I. scapularis populations since 2008. We collected engorged female ticks from deer in this management area and a location in the Mid-Hudson River Valley, NY without area-wide tick control. Larvae were reared from egg masses and their susceptibility to permethrin was tested. Larvae originating from a long-term laboratory colony were used as a susceptible baseline for comparison. Compared against the laboratory colony, resistance ratios at LC-50 for Shelter Island and Hudson Valley I. scapularis were 1.87 and 1.51, respectively. The susceptibilities of the field populations to permethrin were significantly lower than that of the colony ticks. We provide the first data using the larval packet test to establish baseline susceptibility for I. scapularis to permethrin along with information relevant to understanding resistance emergence in tick populations under sustained control pressure from 4-poster devices.


Assuntos
Cervos/parasitologia , Ixodes/efeitos dos fármacos , Permetrina/farmacologia , Infestações por Carrapato/veterinária , Acaricidas/farmacologia , Animais , Resistência a Inseticidas , Doença de Lyme/transmissão , Controle de Ácaros e Carrapatos/métodos
10.
J Med Entomol ; 58(6): 2330-2337, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144601

RESUMO

Eastern equine encephalitis virus (EEEV) is an arbovirus endemic to the eastern United States. Human cases are rare but can be serious. The primary enzootic vector is Culiseta melanura (Coquillett) (Diptera: Culicidae), an ornithophagic mosquito. We conducted an aerial application of a granular methoprene formulation in Hockomock Swamp (Massachusetts), which represents a focus of EEEV transmission. Water collected from inside and outside Cs. melanura crypts was evaluated in bioassays of early fourth instar Cs. melanura larvae using treated and untreated water. Adult eclosion rates were 36% significantly lower in treated compared with untreated water (P < 0.05). Eclosion rates for water collected from inside crypts were significantly higher (62%) than rates from outside crypts (30%) (P < 0.05), indicating higher efficacy outside crypts. We tested whether reduced methoprene efficacy inside the crypts was due to reduced chemical penetration into this habitat. Chemical water analyses confirmed that methoprene concentrations were lower inside the crypts (0.1 ± 0.05 ppb) compared to water from outside crypts (1.79 ± 0.41 ppb). The susceptibility of Cs. melanura to methoprene was also determined to allow for comparison against concentrations observed in water collected from the field (LC-95: 1.95 ± 0.5 ppb). Overall, methoprene-treated water prevented mosquito development for up to 4 wk, but with a reduction in efficacy between 4- and 6-wk post-application. Our results suggest that aerial methoprene applications can effectively treat open water in wetlands but may not provide efficacious control of Cs. melanura due to an inability to penetrate larval habitats.


Assuntos
Culicidae , Controle de Insetos , Inseticidas , Metoprene , Animais , Vírus da Encefalite Equina do Leste , Encefalomielite Equina/prevenção & controle , Massachusetts , Áreas Alagadas
11.
Pest Manag Sci ; 77(11): 5186-5201, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34272800

RESUMO

BACKGROUND: Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), USA. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and nonbasin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO2 -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with laboratory bioassays of catch basin water samples. RESULTS: Declines in 4th instar larvae and pupae were observed in catch basins up to 2-week post-treatment, and we detected a positive relationship between adult female C. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, C. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION: Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk.


Assuntos
Vírus do Nilo Ocidental , Animais , Connecticut , Feminino , Larva , Mosquitos Vetores , Comportamento de Redução do Risco
12.
J Med Entomol ; 58(2): 787-797, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128057

RESUMO

Pesticide resistance in arthropod vectors of disease agents is a growing issue globally. Despite the importance of resistance monitoring to inform mosquito control programs, no regional monitoring programs exist in the United States. The Northeastern Regional Center for Excellence in Vector-Borne Diseases (NEVBD) is a consortium of researchers and public health practitioners with a primary goal of supporting regional vector control activities. NEVBD initiated a pesticide resistance monitoring program to detect resistant mosquito populations throughout the northeastern United States. A regionwide survey was distributed to vector control agencies to determine needs and refine program development and in response, a specimen submission system was established, allowing agencies to submit Culex pipiens (L.) (Diptera:Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) for pesticide resistance testing. NEVBD also established larvicide resistance diagnostics for Bacillus thuringiensis israelensis (Bti) and methoprene. Additional diagnostics were developed for Cx. pipiens resistance to Lysinibacillus sphaericus. We received 58 survey responses, representing at least one agency from each of the 13 northeastern U.S. states. Results indicated that larvicides were deployed more frequently than adulticides, but rarely paired with resistance monitoring. Over 18,000 mosquitoes were tested from six states. Widespread low-level (1 × LC-99) methoprene resistance was detected in Cx. pipiens, but not in Ae. albopictus. No resistance to Bti or L. sphaericus was detected. Resistance to pyrethroids was detected in many locations for both species. Our results highlight the need for increased pesticide resistance testing in the United States and we provide guidance for building a centralized pesticide resistance testing program.


Assuntos
Culicidae/efeitos dos fármacos , Resistência a Inseticidas , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Bacillaceae , Bacillus thuringiensis , Bioensaio/métodos , Agentes de Controle Biológico/farmacologia , Culex/efeitos dos fármacos , Culex/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Metoprene/farmacologia , Controle de Mosquitos , Mosquitos Vetores/crescimento & desenvolvimento , Piretrinas/farmacologia , Estados Unidos
13.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
14.
J Med Entomol ; 56(6): 1555-1564, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31318035

RESUMO

Ticks are widespread vectors for many important medical and veterinary infections, and a better understanding of the factors that regulate their population dynamics is needed to reduce risk for humans, wildlife, and domestic animals. Most ticks, and all non-nidicolous tick species, spend only a small fraction of their lives associated with vertebrate hosts, with the remainder spent in or on soils and other substrates. Ecological studies of tick-borne disease dynamics have emphasized tick-host interactions, including host associations, burdens, and efficiencies of pathogen transmission, while under emphasizing tick biology during off-host periods. Our ability to predict spatiotemporal trends in tick-borne diseases requires more knowledge of soil ecosystems and their effect on host and tick populations. In this review, we focus on tick species of medical and veterinary concern and describe: 1) the relationships between soil factors and tick densities; 2) biotic and abiotic factors within the soil ecosystem that directly affect tick survival; 3) potential indirect effects on ticks mediated by soil ecosystem influences on their vertebrate hosts; 4) the potential for tick-mediated effects on vertebrate host populations to affect ecosystems; and 5) possible nontarget impacts of tick management on the soil ecosystem. Soils are complex ecosystem components with enormous potential to affect the survival and behavior of ticks during their off-host periods. Hence, tick-borne disease systems present an excellent opportunity for soil ecologists and public health researchers to collaborate and improve understanding of these medically important and ecologically complex disease cycles.


Assuntos
Ecossistema , Interações Hospedeiro-Parasita , Solo , Controle de Ácaros e Carrapatos , Carrapatos/fisiologia , Animais , Densidade Demográfica , Vertebrados/parasitologia
15.
Ecol Evol ; 8(16): 7824-7834, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250666

RESUMO

The blacklegged tick Ixodes scapularis is the primary vector for the bacterium causing Lyme disease in eastern North America and for other medically important pathogens. This species is vulnerable to attack by fungal pathogens and arthropod predators, but the impacts of interactions between biocontrol agents have not been examined. The biocontrol agent Met52®, containing the entomopathogenic fungus Metarhizium brunneum (=M. anisopliae), controls blacklegged ticks with efficacy comparable to chemical acaricides. The brush-legged wolf spider Schizocosa ocreata is a predator of I. scapularis that reduces their survival under field conditions. We conducted a field microcosm experiment to assess the compatibility of Met52 and S. ocreata as tick biocontrol agents. We compared the fits of alternative models in predicting survival of unfed (flat) and blood-fed (engorged) nymphs. We found the strongest support for a model that included negative effects of Met52 and S. ocreata on flat nymph survival. We found evidence for interference between biocontrol agents, with Met52 reducing spider survival, but we did not find a significant interaction effect between the two agents on nymph survival. For engorged nymphs, low recovery rates resulted in low statistical power to detect possible effects of biocontrol agents. We found that nymph questing activity was lower when the spider was active above the leaf litter than when the spider was unobserved. This provides the first evidence that predation cues might affect behavior important for tick fitness and pathogen transmission. This study presents field microcosm evidence that the biopesticide Met52 and spider Schizocosa ocreata each reduced survival of blacklegged ticks Ixodes scapularis. Met52 reduced spider survival. Potential interference between Met52 and the spider should be examined at larger scales, where overlap patterns may differ. Ticks were more likely to quest when the spider was inactive, suggesting the ticks changed their behavior to reduce danger.

16.
J Med Entomol ; 54(6): 1778-1782, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28968843

RESUMO

Factors affecting the survival of Ixodes scapularis Say (Acari: Ixodidae) during diapause are poorly known. This is partially due to the difficulty involved in collecting ticks that are not actively questing. A possible method to overcome this issue involves the use of microcosms containing litter material and soil, but an effective method for tick recovery is required. This study tested three methods for the recovery of I. scapularis nymphs from soil microcosms during their active and inactive periods, as well as recovery of engorged larval I. scapularis. The first method was hand sorting for 120 min; the second was sorting for 30 min before placing the contents of the microcosm into a Berlese funnel for 72 h; and the third method was placing the microcosm contents into a Berlese funnel for 72 h with no prior hand sorting. Hand sorting alone and the combination of hand sorting plus the Berlese funnel were the most effective recovery methods for both active nymphs and those in diapause. Hand sorting alone was not an effective method for the recovery of engorged larvae and Berlese funnel extraction alone was not the most effective method for any of the I. scapularis physiological states tested. Overall, a combination of hand sorting and Berlese extraction was an effective recovery method for all physiological states and was 58.3% more time-effective compared against hand-sorting alone. This method will allow researchers to process microcosm samples effectively and efficiently, improving our ability to investigate the ecology of I. scapularis during their inactive periods.


Assuntos
Ecologia/métodos , Ixodes , Animais , Larva , Ninfa
17.
Parasit Vectors ; 9(1): 606, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887625

RESUMO

BACKGROUND: The incidence of Lyme disease shows high degrees of inter-annual variation in the northeastern United States, but the factors driving this variation are not well understood. Complicating matters, it is also possible that these driving factors may vary in regions with differing histories of Lyme disease endemism. We evaluated the effect of the number of hot (T > 25 °C), dry (precipitation = 0) days during the questing periods of the two immature Ixodes scapularis life stages (larval and nymphal) on inter-annual variation in Lyme disease incidence between 2000 and 2011 in long-term endemic versus recently endemic areas. We also evaluated the effect of summer weather on tick questing activity and the number of ticks found on small mammals between 1994 and 2012 on six sites in Millbrook, NY. RESULTS: The number of hot, dry days during the larval period of the previous year did not affect the human incidence of Lyme disease or the density of questing nymphs the following season. However, dry summer weather during the nymphal questing period had a significant negative effect on the incidence of Lyme disease in the long-term endemic areas, and on the density of questing nymphs. Summer weather conditions had a more pronounced effect on actively questing I. scapularis collected via dragging than on the number of ticks found feeding on small mammals. In recently endemic areas Lyme disease incidence increased significantly over time, but no trend was detected between disease incidence and dry summer weather. CONCLUSIONS: Recently endemic regions showed an increase in Lyme disease incidence over time, while incidence in long-term endemic regions appears to have stabilized. Only within the stabilized areas were we able to detect reduced Lyme disease incidence in years with hot, dry summer weather. These patterns were reflected in our field data, which showed that questing activity of nymphal I. scapularis was reduced by hot, dry summer weather.


Assuntos
Ixodes/fisiologia , Doença de Lyme/epidemiologia , Tempo (Meteorologia) , Animais , Doenças Endêmicas , Humanos , Incidência , New England/epidemiologia , Peromyscus , Chuva , Sciuridae , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA