Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7968): 87-93, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316657

RESUMO

Cross-coupling reactions are among the most important transformations in modern organic synthesis1-3. Although the range of reported (het)aryl halides and nucleophile coupling partners is very large considering various protocols, the reaction conditions vary considerably between compound classes, necessitating renewed case-by-case optimization of the reaction conditions4. Here we introduce adaptive dynamic homogeneous catalysis (AD-HoC) with nickel under visible-light-driven redox reaction conditions for general C(sp2)-(hetero)atom coupling reactions. The self-adjustive nature of the catalytic system allowed the simple classification of dozens of various classes of nucleophiles in cross-coupling reactions. This is synthetically demonstrated in nine different bond-forming reactions (in this case, C(sp2)-S, Se, N, P, B, O, C(sp3, sp2, sp), Si, Cl) with hundreds of synthetic examples under predictable reaction conditions. The catalytic reaction centre(s) and conditions differ from one another by the added nucleophile, or if required, a commercially available inexpensive amine base.

2.
J Am Chem Soc ; 146(19): 13666-13675, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709144

RESUMO

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.

3.
Inorg Chem ; 63(6): 2967-2976, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38290512

RESUMO

Palladium complexes with N-heterocyclic carbenes (Pd/NHC) serve as prominent precatalysts in numerous Pd-catalyzed organic reactions. While the evolution of Pd/NHC complexes, which involves the cleavage of the Pd-C(NHC) bond via reductive elimination and dissociation, is acknowledged to influence the catalysis mechanism and the performance of the catalytic systems, conventional analytic techniques [such as NMR, IR, UV-vis, gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC)] frequently fail to quantitatively monitor the transformations of Pd/NHC complexes at catalyst concentrations typical of real-world conditions (below approximately 1 mol %). In this study, for the first time, we show the viability of using electrospray ionization mass spectrometry (ESI-MS). This approach was combined with the use of selectively deuterated H-NHC, Ph-NHC, and O-NHC coupling products as internal standards, allowing for an in-depth quantitative analysis of the evolution of Pd/NHC catalysts within actual catalytic systems. The reliability of this approach was affirmed by aligning the ESI-MS results with the NMR spectroscopy data obtained at greater Pd/NHC precatalyst concentrations (2-5 mol %) in the Mizoroki-Heck, Sonogashira, and alkyne transfer hydrogenation reactions. The efficacy of the ESI-MS methodology was further demonstrated through its application in the Mizoroki-Heck reaction at Pd/NHC loadings of 5, 0.5, 0.05, and 0.005 mol %. In this work, for the first time, we present a methodology for the quantitative characterization of pivotal catalyst transformation processes commonly observed in M/NHC systems.

4.
Inorg Chem ; 63(4): 1867-1878, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38237143

RESUMO

LnCl3(THF)3 (Ln = Y, La ÷ Nd, Sm ÷ Lu) readily react with the tridentate 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me3tach) ligand to form mono- or binuclear lanthanide trichloride complexes, depending on the stoichiometry of the reaction and the ionic radius of the metal: mononuclear pseudosandwich [LnCl3(Me3tach)2], (Ln = Y, La ÷ Ho) or binuclear complexes [Ln2Cl6(Me3tach)3], or [LnCl3(Me3tach)(THF)]2 (Ln = Sm, Tb). Detailed analysis of the NMR data of [LnCl3(Me3tach)2] complexes with paramagnetic lanthanide ions showed that their structures remained unchanged in the toluene solution. A series of isomorphous complexes [LnCl3(Me3tach)(Py)2] (Ln = La, Sm, Tb, Er, Lu; Py = pyridine) have been obtained by the recrystallization of either mononuclear or binuclear complexes from pyridine. Complexes of terbium and europium ions with the Me3tach ligand exhibit relatively high quantum yields of metal-centered luminescence (0.39 and 0.32, respectively).

5.
Angew Chem Int Ed Engl ; 63(13): e202314208, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240738

RESUMO

In modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions. The key to selectivity lies in the intricate interplay between reversibility and the energy landscapes governing C-C bond formation in thiol-yne-ene reactions. The developed approach not only allows to prioritize the thiol-yne-ene cascade, dominating over alternative reactions, but also extends the scope of coupling products obtained from alkenes and alkynes of various structures and electron density distributions, regardless of their relative polarity difference, opening doors to more versatile synthetic possibilities. In the present study, we provide a powerful tool for atom-economical C-S and C-C bond formation, paving the way for the efficient synthesis of complex molecules. Carrying out our experimental and computational studies, we elucidated the fundamental mechanisms underlying radical cascades, a knowledge that can be broadly applied in the field of organic chemistry.

6.
Angew Chem Int Ed Engl ; 63(18): e202402109, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421344

RESUMO

This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.

7.
Angew Chem Int Ed Engl ; 63(27): e202317468, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38572820

RESUMO

The formation of transient hybrid nanoscale metal species from homogeneous molecular precatalysts has been demonstrated by in situ NMR studies of catalytic reactions involving transition metals with N-heterocyclic carbene ligands (M/NHC). These hybrid structures provide benefits of both molecular complexes and nanoparticles, enhancing the activity, selectivity, flexibility, and regulation of active species. However, they are challenging to identify experimentally due to the unsuitability of standard methods used for homogeneous or heterogeneous catalysis. Utilizing a sophisticated solid-state NMR technique, we provide evidence for the formation of NHC-ligated catalytically active Pd nanoparticles (PdNPs) from Pd/NHC complexes during catalysis. The coordination of NHCs via C(NHC)-Pd bonding to the metal surface was first confirmed by observing the Knight shift in the 13C NMR spectrum of the frozen reaction mixture. Computational modeling revealed that as little as few NHC ligands are sufficient for complete ligation of the surface of the formed PdNPs. Catalytic experiments combined with in situ NMR studies confirmed the significant effect of surface covalently bound NHC ligands on the catalytic properties of the PdNPs formed by decomposition of the Pd/NHC complexes. This observation shows the crucial influence of NHC ligands on the activity and stability of nanoparticulate catalytic systems.

8.
J Am Chem Soc ; 144(32): 14590-14606, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35939718

RESUMO

Mass spectrometry (MS) is a convenient, highly sensitive, and reliable method for the analysis of complex mixtures, which is vital for materials science, life sciences fields such as metabolomics and proteomics, and mechanistic research in chemistry. Although it is one of the most powerful methods for individual compound detection, complete signal assignment in complex mixtures is still a great challenge. The unconstrained formula-generating algorithm, covering the entire spectra and revealing components, is a "dream tool" for researchers. We present the framework for efficient MS data interpretation, describing a novel approach for detailed analysis based on deisotoping performed by gradient-boosted decision trees and a neural network that generates molecular formulas from the fine isotopic structure, approaching the long-standing inverse spectral problem. The methods were successfully tested on three examples: fragment ion analysis in protein sequencing for proteomics, analysis of the natural samples for life sciences, and study of the cross-coupling catalytic system for chemistry.


Assuntos
Metabolômica , Proteômica , Algoritmos , Misturas Complexas , Aprendizado de Máquina , Espectrometria de Massas/métodos , Metabolômica/métodos
9.
Angew Chem Int Ed Engl ; 61(17): e202116888, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35147284

RESUMO

The first example of an intermolecular thiol-yne-ene coupling reaction is reported for the one-pot construction of C-S and C-C bonds. Thiol-yne-ene coupling opens a new dimension in building molecular complexity to access densely functionalized products. The employment of Eosin Y/DBU/MeOH photocatalytic system suppresses hydrogen atom transfer (HAT) and associative reductant upconversion (via C-S three-electron σ-bond formation). Investigation of the reaction mechanism by combining online ESI-UHRMS, EPR spectroscopy, isotope labeling, determination of quantum yield, cyclic voltammetry, Stern-Volmer measurements and computational modeling revealed a unique photoredox cycle with four radical-involving stages. As a result, previously unavailable products of the thiol-yne-ene reaction were obtained in good yields with high selectivity. They can serve as stable precursors for synthesizing synthetically demanding activated 1,3-dienes.

10.
Angew Chem Int Ed Engl ; 61(9): e202116131, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963027

RESUMO

Imidazolium salts have ubiquitous applications in energy research, catalysis, materials and medicinal sciences. Here, we report a new strategy for the synthesis of diverse heteroatom-functionalized imidazolium and imidazolinium salts from easily available 1,4-diaza-1,3-butadienes in one step. The strategy relies on a discovered family of unprecedented nucleophilic addition/cyclization reactions with trialkyl orthoformates and heteroatomic nucleophiles. To probe general areas of application, synthesized N-heterocyclic carbene (NHC) precursors were feasible for direct metallation to give functionalized M/carbene complexes (M=Pd, Ni, Cu, Ag, Au), which were isolated in individual form. The utility of the chloromethyl function for the postmodification of the synthesized salts and Pd/carbene complexes was demonstrated. The obtained complexes and imidazolium salts demonstrated good activities in Pd- or Ni-catalyzed model cross-coupling and C-H activation reactions.

11.
Inorg Chem ; 60(10): 7128-7142, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33949864

RESUMO

The Mizoroki-Heck reaction is one of the most known and best studied catalytic transformations and has provided an outstanding driving force for the development of catalysis and synthetic applications. Three out of four classical Mizoroki-Heck catalytic cycle intermediates contain Pd-C bonds and are well known and studied in detail. However, a simple palladium hydride (which is formed after the product-releasing ß-H-elimination step) is a kind of elusive intermediate in the Mizoroki-Heck reaction. In the present study, we performed a combined theoretical and mass spectrometry (MS) study of palladium hydride complexes [PdX2H]- (X = Cl, Br, and I), which are reactive intermediates in the Mizoroki-Heck reaction. Static and molecular dynamic calculations revealed that these species have a T-shaped structure with a trans-arrangement of halogen atoms. Other isomers of [PdX2H]- are unstable and easily rearrange into the T-shaped form or decompose. These palladium hydride intermediates were detected by MS in precatalyst activation using NaBH4, Et3N, and a solvent molecule as reducing agents. Online MS monitoring allowed the detection of [PdX2H]- species in the course of the Mizoroki-Heck reaction.

12.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068277

RESUMO

Petroleum contains a large number of heteroatomic compounds, but today, most of them are not efficiently utilized. The constant development of the sustainability concept recalls for rethinking the usage of fossil resources with improved chemical utility. In order to initiate research aimed at involving active petroleum compounds in chemical transformations, a new analytical method for product detection is needed. Here, we study the click reaction of thiols with alkynes, leading to the formation of α-vinyl sulfides directly in the petroleum environment. The reaction was carried out using an (IMes)Pd(acac)Cl catalyst, which demonstrated tolerance to petroleum components. In this study, the concentration of thiols ranged from 1 M to 0.01 M (from 8% to 0.1%). To detect products at low concentrations, a special alkyne labeled with an imidazole moiety was used. This approach made it possible to observe the formation of vinyl sulfides by electrospray ionization mass spectrometry (ESI-MS), which provides an opportunity for further optimization of the reaction conditions and future developments for the direct involvement of oil components in chemical reactions.

13.
Chemistry ; 26(67): 15672-15681, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881095

RESUMO

The product of a revealed transformation-NHC-ethynyl coupling-was observed as a catalyst transformation pathway in the Sonogashira cross-coupling, catalyzed by Pd/NHC complexes. The 2-ethynylated azolium salt was isolated in individual form and fully characterized, including X-ray analysis. A number of possible intermediates of this transformation with common formulae (NHC)n Pd(C2 Ph) (n=1,2) were observed and subjected to collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) experiments to elucidate their structure. Measured bond dissociation energies (BDEs) and IRMPD spectra were in an excellent agreement with quantum calculations for coupling product π-complexes with Pd0 . Molecular dynamics simulations confirmed the observed multiple CID fragmentation pathways. An unconventional methodology to study catalyst evolution suggests the reported transformation to be considered in the development of new catalytic systems for alkyne functionalization reactions.

14.
Angew Chem Int Ed Engl ; 55(29): 8338-42, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27271823

RESUMO

Spectral studies revealed the presence of a specific arrangement of 5-hydroxymethylfurfural (5-HMF) molecules in solution as a result of a hydrogen-bonding network, and this arrangement readily facilitates the aging of 5-HMF. Deterioration of the quality of this platform chemical limits its practical applications, especially in synthesis/pharma areas. The model drug Ranitidine (Zantac®) was synthesized with only 15 % yield starting from 5-HMF which was isolated and stored as an oil after a biomass conversion process. In contrast, a much higher yield of 65 % was obtained by using 5-HMF isolated in crystalline state from an optimized biomass conversion process. The molecular mechanisms responsible for 5-HMF decomposition in solution were established by NMR and ESI-MS studies. A highly selective synthesis of a 5-HMF derivative from glucose was achieved using a protecting group at O(6) position.

15.
Sci Rep ; 12(1): 3780, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260601

RESUMO

Visible light photocatalysis is a rapidly developing branch of chemical synthesis with outstanding sustainable potential and improved reaction design. However, the challenge is that many particular chemical reactions may require dedicated tuned photoreactors to achieve maximal efficiency. This is a critical stumbling block unless the possibility for reactor design becomes available directly in the laboratories. In this work, customized laboratory photoreactors were developed with temperature stabilization and the ability to adapt different LED light sources of various wavelengths. We explore two important concepts for the design of photoreactors: reactors for performing multiple parallel experiments and reactors suitable for scale-up synthesis, allowing a rapid increase in the product amount. Reactors of the first type were efficiently made of metal using metal laser sintering, and reactors of the second type were successfully manufactured from plastic using fused filament fabrication. Practical evaluation has shown good accuracy of the temperature stabilization in the range typically required for organic synthesis for both types of reactors. Synthetic application of 3D printed reactors has shown good utility in test reactions-furan C-H arylation and thiol-yne coupling. The critical effect of temperature stabilization was established for the furan arylation reaction: heating of the reaction mixture may lead to the total vanishing of photochemical effect.

16.
Dalton Trans ; 51(25): 9843-9856, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35708172

RESUMO

The key problem of the instability of fluorine-containing diazadienes was addressed to perform the efficient synthesis of imidazolium salts containing fluorine substituents in the aryl groups. The subsequent reaction of fluorine-containing imidazolium compounds (NHCF) with palladium salts under simple conditions afforded new Pd/NHCF complexes. Computational and structural studies were performed to assess the effect of fluorine on the Pd-NHC bond and gave insight into the electronic effects in the molecule. The introduction of fluorine substituents into the aryl rings of the NHC ligands leads to a slight decrease in their σ-donor properties. At the same time, there is a slight increase in the π-acceptor capacity of NHCF. These two effects compensate for each other, so that the Pd-NHC bonding energy remains virtually unchanged. Another observed effect is associated with a slight weakening of the trans influence of the NHCF ligands, which is expressed in the strengthening of the Pd-Solv bond in (NHC)Pd(Solv) complexes. For the first time, a series of novel Pd/NHCF complexes were synthesized via a straightforward approach from fluorine-containing anilines.

17.
Chem Sci ; 11(37): 10061-10070, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34094267

RESUMO

An associative electron upconversion is proposed as a key step determining the selectivity of thiol-yne coupling. The developed synthetic approach provided an efficient tool to access a comprehensive range of products - four types of vinyl sulfides were prepared in high yields and selectivity. We report practically important transition-metal-free regioselective thiol-yne addition and formation of the demanding Markovnikov-type product by a radical photoredox process. The photochemical process was directly monitored by mass-spectrometry in a specially designed ESI-MS device with green laser excitation in the spray chamber. The proposed reaction mechanism is supported by experiments and DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA