Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37021589

RESUMO

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Adulto , Doença de Alzheimer/patologia , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/complicações , Atrofia/patologia , Biomarcadores/líquido cefalorraquidiano
2.
Brain ; 143(12): 3653-3671, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206953

RESUMO

Epidemiological and experimental studies suggest that a disease-aggravating neuroinflammatory process is present at preclinical stages of Alzheimer's disease. Given that individuals with Down syndrome are at increased genetic risk of Alzheimer's disease and therefore develop the spectrum of Alzheimer's neuropathology in a uniform manner, they constitute an important population to study the evolution of neuroinflammation across the Alzheimer's continuum. Therefore, in this cross-sectional study, we characterized the brain inflammatory profile across the lifespan of individuals with Down syndrome. Microglial morphology and inflammatory cytokine expression were analysed by immunohistochemistry and electrochemiluminescent-based immunoassays in the frontal cortex from foetuses to adults with Down syndrome and control subjects (16 gestational weeks to 64 years), totalling 127 cases. Cytokine expression in mixed foetal primary cultures and hippocampus of adults with Down syndrome, as well as the effects of sex on cytokine expression were also analysed. A higher microglial soma size-to-process length ratio was observed in the frontal cortex of children and young adults with Down syndrome before the development of full-blown Alzheimer's pathology. Moreover, young adults with Down syndrome also displayed increased numbers of rod-like microglia. Increased levels of interleukin-8 and interleukin-10 were observed in children with Down syndrome (1-10 years; Down syndrome n = 5, controls n = 10) and higher levels of interleukin-1ß, interleukin-1α, interleukin-6, interleukin-8, interleukin-10, interleukin-15, eotaxin-3, interferon gamma-induced protein 10, macrophage-derived chemokine, and macrophage inflammatory protein-beta, were found in young adults with Down syndrome compared to euploid cases (13-25 years, Down syndrome n = 6, controls n = 24). Increased cytokine expression was also found in the conditioned media of mixed cortical primary cultures from second trimester foetuses with Down syndrome (Down syndrome n = 7, controls n = 7). Older adults with Down syndrome (39-68 years, Down syndrome n = 22, controls n = 16) displayed reduced levels of interleukin-10, interleukin-12p40, interferon-gamma and tumour necrosis factor-alpha. Microglia displayed larger somas and shorter processes. Moreover, an increase in dystrophic microglia and rod-like microglia aligning to neurons harbouring tau pathology were also observed. Sex stratification analyses revealed that females with Down syndrome had increased interleukin-6 and interleukin-8 levels compared to males with Down syndrome. Finally, multivariate projection methods identified specific cytokine patterns among individuals with Down syndrome. Our findings indicate the presence of an early and evolving neuroinflammatory phenotype across the lifespan in Down syndrome, a knowledge that is relevant for the discovery of stage-specific targets and for the design of possible anti-inflammatory trials against Alzheimer's disease in this population.


Assuntos
Síndrome de Down/patologia , Encefalite/patologia , Adolescente , Idoso , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Células Cultivadas , Criança , Pré-Escolar , Estudos Transversais , Citocinas/biossíntese , Progressão da Doença , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Lactente , Recém-Nascido , Longevidade , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Gravidez , Tauopatias/patologia , Adulto Jovem
3.
PLoS Genet ; 12(5): e1006033, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27195491

RESUMO

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic ß-cell dysfunction. Reduced mitochondrial function is thought to be central to ß-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in ß-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D ß-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D ß-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their ß-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of ß-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D ß-cells where we had little knowledge of which changes cause ß-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to ß-cell mitochondrial dysfunction in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Síndrome de Down/genética , Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Trifosfato de Adenosina/metabolismo , Aneuploidia , Animais , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 21/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/genética
4.
Proc Natl Acad Sci U S A ; 110(11): 4315-20, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23440186

RESUMO

Bisphenol A (BPA) is a ubiquitous compound that is emerging as a possible toxicant during embryonic development. BPA has been shown to epigenetically affect the developing nervous system, but the molecular mechanisms are not clear. Here we demonstrate that BPA exposure in culture led to delay in the perinatal chloride shift caused by significant decrease in potassium chloride cotransporter 2 (Kcc2) mRNA expression in developing rat, mouse, and human cortical neurons. Neuronal chloride increased correspondingly. Treatment with epigenetic compounds decitabine and trichostatin A rescued the BPA effects as did knockdown of histone deacetylase 1 and combined knockdown histone deacetylase 1 and 2. Furthermore, BPA evoked increase in tangential interneuron migration and increased chloride in migrating neurons. Interestingly, BPA exerted its effect in a sexually dimorphic manner, with a more accentuated effect in females than males. By chromatin immunoprecipitation, we found a significant increase in binding of methyl-CpG binding protein 2 to the "cytosine-phosphate-guanine shores" of the Kcc2 promoter, and decrease in binding of acetylated histone H3K9 surrounding the transcriptional start site. Methyl-CpG binding protein 2-expressing neurons were more abundant resulting from BPA exposure. The sexually dimorphic effect of BPA on Kcc2 expression was also demonstrated in cortical neurons cultured from the offspring of BPA-fed mouse dams. In these neurons and in cortical slices, decitabine was found to rescue the effect of BPA on Kcc2 expression. Overall, our results indicate that BPA can disrupt Kcc2 gene expression through epigenetic mechanisms. Beyond increase in basic understanding, our findings have relevance for identifying unique neurodevelopmental toxicity mechanisms of BPA, which could possibly play a role in pathogenesis of human neurodevelopmental disorders.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Compostos Benzidrílicos/efeitos adversos , Córtex Cerebral/metabolismo , Cloretos/metabolismo , Epigênese Genética/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenóis/efeitos adversos , Elementos de Resposta , Simportadores/biossíntese , Poluentes Ocupacionais do Ar/farmacologia , Animais , Compostos Benzidrílicos/farmacologia , Células Cultivadas , Doenças do Sistema Nervoso Central/induzido quimicamente , Doenças do Sistema Nervoso Central/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Histona Desacetilase 1/metabolismo , Humanos , Masculino , Camundongos , Neurônios/patologia , Fenóis/farmacologia , Ratos , Caracteres Sexuais , Cotransportadores de K e Cl-
5.
FASEB J ; 28(1): 195-205, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036883

RESUMO

Amyloid precursor protein (APP), encoded on Hsa21, functions as a cell adhesion molecule (CAM) in axonal growth cones (GCs) of the developing brain. We show here that axonal GCs of human fetal Down syndrome (DS) neurons (and of a DS mouse model) overexpress APP protein relative to euploid controls. We investigated whether DS neurons generate an abnormal, APP-dependent GC phenotype in vitro. On laminin, which binds APP and ß1 integrins (Itgb1), DS neurons formed enlarged and faster-advancing GCs compared to controls. On peptide matrices that bind APP only, but not on those binding exclusively Itgb1 or L1CAM, DS GCs were significantly enlarged (2.0-fold), formed increased close adhesions (1.8-fold), and advanced faster (1.4-fold). In assays involving alternating stripes of monospecific matrices, human control GCs exhibited no preference for any of the substrates, whereas DS GCs preferred the APP-binding matrix (cross-over decreased significantly from 48.2 to 27.2%). Reducing APP expression in DS GCs with siRNA normalized most measures of the phenotype, including substrate choice. These experiments show that human DS neurons exhibit an APP-dependent, abnormal GC phenotype characterized by increased adhesion and altered contact guidance. The results suggest that APP overexpression may perturb axonal pathfinding and circuit formation in developing DS brain.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/metabolismo , Animais , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo , Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Laminina/metabolismo , Camundongos
6.
Brain ; 137(Pt 3): 860-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24519975

RESUMO

Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome.


Assuntos
Síndrome de Down/metabolismo , Fator de Crescimento Neural/metabolismo , Prosencéfalo/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Síndrome de Down/enzimologia , Síndrome de Down/fisiopatologia , Feto/enzimologia , Feto/metabolismo , Feto/patologia , Idade Gestacional , Humanos , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator de Crescimento Neural/biossíntese , Fator de Crescimento Neural/fisiologia , Prosencéfalo/enzimologia , Prosencéfalo/patologia , Precursores de Proteínas/fisiologia
7.
Mol Syndromol ; 14(2): 89-100, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064334

RESUMO

Research focused on Down syndrome continued to gain momentum in the last several years and is advancing our understanding of how trisomy 21 (T21) modifies molecular and cellular processes. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. During the COVID pandemic, T21RS held its first virtual conference program, sponsored by the University of California at Irvine, on June 8-10, 2021 and brought together 342 scientists, families, and industry representatives from over 25 countries to share the latest discoveries on underlying cellular and molecular mechanisms of T21, cognitive and behavioral changes, and comorbidities associated with Down syndrome, including Alzheimer's disease and Regression Disorder. Presentations of 91 cutting-edge abstracts reflecting neuroscience, neurology, model systems, psychology, biomarkers, and molecular and pharmacological therapeutic approaches demonstrate the compelling interest and continuing advancement toward innovating biomarkers and therapies aimed at ameliorating health conditions associated with T21.

8.
Front Neurol ; 13: 882635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36742045

RESUMO

Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AßO) at synapses correlates with synaptic loss and that AßO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AßO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AßO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.

9.
Nat Commun ; 12(1): 6208, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707084

RESUMO

Inhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression­enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.


Assuntos
Analgésicos/uso terapêutico , Benzazepinas/uso terapêutico , Reposicionamento de Medicamentos , Indóis/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Benzazepinas/farmacologia , Dor do Câncer/tratamento farmacológico , Cateninas/genética , Cateninas/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Indóis/farmacologia , Camundongos , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Simportadores/genética , Simportadores/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , delta Catenina
10.
Mol Syndromol ; 12(4): 202-218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34421499

RESUMO

Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.

11.
J Neurosci ; 29(13): 4004-15, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339596

RESUMO

Soluble amyloid beta oligomers (AbetaOs) interfere with synaptic function and bind with high affinity to synapses, but the mechanism underlying AbetaO synaptic targeting is not known. Here, we show that the accumulation of synthetic or native Alzheimer's disease (AD)-brain oligomers at synapses is regulated by synaptic activity. Electrical or chemical stimulation increased AbetaO synaptic localization and enhanced oligomer formation at synaptic terminals, whereas inhibition with TTX blocked AbetaO synaptic localization and reduced AbetaO synaptic load. The zinc-binding 8-OH-quinoline clioquinol markedly reduced AbetaO synaptic targeting, which was also reduced in brain sections of animals deficient in the synaptic vesicle zinc transporter ZnT3, indicating that vesicular zinc released during neurotransmission is critical for AbetaO synaptic targeting. Oligomers were not internalized in recycled vesicles but remained at the cell surface, where they colocalized with NR2B NMDA receptor subunits. Furthermore, NMDA antagonists blocked AbetaO synaptic targeting, implicating excitatory receptor activity in oligomer formation and accumulation at synapses. In AD brains, oligomers of different size colocalized with synaptic markers in hippocampus and cortex, where oligomer synaptic accumulation correlated with synaptic loss.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Zinco/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Animais , Encéfalo/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte , Proteínas de Transporte de Cátions , Células Cultivadas , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Humanos , Técnicas In Vitro , Proteínas de Membrana/deficiência , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Neurônios , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinaptofisina/metabolismo , Tetrodotoxina/farmacologia , Fatores de Tempo , Zinco/farmacologia
12.
FASEB J ; 22(7): 2357-67, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18263702

RESUMO

Differential expression, activity, phosphorylation, and oligomerization of tau play a critical role during neuronal development and in a number of age-related neurodegenerative diseases. An experimental system that accurately models the molecular changes involved in tauopathies, particularly changes in tau isoform activity, requires the expression at physiological levels of the full complement of tau isoforms present in the adult human brain. To this end, we analyzed tau expression in human cortical neurons (HCNs) in culture. Here, we show that the isoform profile of tau in HCNs is similar to that in the adult human brain and that isoform expression is regulated during neuronal development and by cellular substrates. Interestingly, 4R tau exhibited a distinct pattern of expression and subcellular localization, suggesting the presence of specific functional roles for tau isoforms in HCNs. Tau phosphorylation, microtubule binding, and subcellular localization were markedly altered by pharmacological manipulation of tau-directed phosphatase activities, which also induced the appearance of tau oligomeric forms associated with memory loss in animal models of tauopathy. Thus, experimentally induced changes in tau activity and function in HCNs recapitulate critical features of tauopathies that may lead to neuronal dysfunction and degeneration in the human brain.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Proteínas tau/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Citoesqueleto/fisiologia , Regulação da Expressão Gênica , Humanos , Laminina/farmacologia , Neuritos/fisiologia , Neuritos/ultraestrutura , Neurônios/citologia , Fosforilação , Polilisina/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinapses/fisiologia , Proteínas tau/metabolismo
13.
Cell Rep ; 29(8): 2473-2488.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747614

RESUMO

An abnormal number of chromosomes, or aneuploidy, accounts for most spontaneous abortions, causes developmental defects, and is associated with aging and cancer. The molecular mechanisms by which aneuploidy disrupts cellular function remain largely unknown. Here, we show that aneuploidy disrupts the morphology of the nucleus. Mutations that increase the levels of long-chain bases suppress nuclear abnormalities of aneuploid yeast independent of karyotype identity. Quantitative lipidomics indicates that long-chain bases are integral components of the nuclear membrane in yeast. Cells isolated from patients with Down syndrome also show that abnormal nuclear morphologies and increases in long-chain bases not only suppress these abnormalities but also improve their fitness. We obtained similar results with cells isolated from patients with Patau or Edward syndrome, indicating that increases in long-chain bases improve the fitness of aneuploid cells in yeast and humans. Targeting lipid biosynthesis pathways represents an important strategy to suppress nuclear abnormalities in aneuploidy-associated diseases.


Assuntos
Aneuploidia , Síndrome de Down/metabolismo , Membrana Nuclear/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Cariótipo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Síndrome da Trissomia do Cromossomo 13/metabolismo , Síndrome da Trissomía do Cromossomo 18/metabolismo , Leveduras/metabolismo
14.
Mol Syndromol ; 9(6): 279-286, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800043

RESUMO

In the last decade, a number of important research advances in different fields have allowed Down syndrome (DS) research to flourish, creating a time of both unparalleled opportunity and considerable challenge. Building a scientific framework that distills mechanisms involved in the developmental intellectual disability of DS as well as the early-onset component of Alzheimer disease and the several other comorbidities associated with the condition is a challenge that scientists are now tackling using novel technologies and multidisciplinary approaches. The Trisomy 21 Research Society (T21RS) was founded in 2014 to address these evolving needs and challenges. In June of 2017, the T21RS held its 2nd International Conference in Chicago, USA. With more than 200 scientists, advocates, people with DS, and family members in attendance, the meeting served as a forum for the discussion of the latest research and clinical advances as well as the most compelling needs of people with DS and their families.

15.
Neuron ; 33(5): 677-88, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11879646

RESUMO

Most Down's syndrome (DS) patients develop Alzheimer's disease (AD) neuropathology. Astrocyte and neuronal cultures derived from fetal DS brain show alterations in the processing of amyloid beta precursor protein (AbetaPP), including increased levels of AbetaPP and C99, reduced levels of secreted AbetaPP (AbetaPPs) and C83, and intracellular accumulation of insoluble Abeta42. This pattern of AbetaPP processing is recapitulated in normal astrocytes by inhibition of mitochondrial metabolism, consistent with impaired mitochondrial function in DS astrocytes. Intracellular Abeta42 and reduced AbetaPPs are also detected in DS and AD brains. The survival of DS neurons is markedly increased by recombinant or astrocyte-produced AbetaPPs, suggesting that AbetaPPs may be a neuronal survival factor. Thus, mitochondrial dysfunction in DS may lead to intracellular deposition of Abeta42, reduced levels of AbetaPPs, and a chronic state of increased neuronal vulnerability.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Síndrome de Down/metabolismo , Mitocôndrias/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Apoptose , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Benzimidazóis/metabolismo , Carbocianinas/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Pré-Escolar , Síndrome de Down/complicações , Síndrome de Down/patologia , Feto/citologia , Corantes Fluorescentes/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lactente , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/farmacologia , Desacopladores/metabolismo
16.
Free Radic Biol Med ; 44(12): 2051-7, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18423383

RESUMO

Alzheimer disease (AD) is a neurodegenerative disease which is characterized by the presence of extracellular senile plaques mainly composed of amyloid-beta peptide (Abeta), intracellular neurofibrillary tangles, and selective synaptic and neuronal loss. AD brains revealed elevated levels of oxidative stress markers which have been implicated in Abeta-induced toxicity. In the present work we addressed the hypothesis that oxidative stress occurs early in the development of AD and evaluated the extension of the oxidative stress and the levels of antioxidants in an in vivo model of AD, the triple-transgenic mouse, which develops plaques, tangles, and cognitive impairments and thus mimics AD progression in humans. We have shown that in this model, levels of antioxidants, namely, reduced glutathione and vitamin E, are decreased and the extent of lipid peroxidation is increased. We have also observed increased activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase. These alterations are evident during the Abeta oligomerization period, before the appearance of Abeta plaques and neurofibrillary tangles, supporting the view that oxidative stress occurs early in the development of the disease.


Assuntos
Doença de Alzheimer/metabolismo , Antioxidantes/metabolismo , Encéfalo/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Glutationa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Vitamina E/metabolismo
17.
Free Radic Biol Med ; 114: 10-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28965914

RESUMO

Abnormal dendritic spine structure and function is one of the most prominent features associated with neurodevelopmental disorders including Down syndrome (DS). Defects in both spine morphology and spine density may underlie alterations in neuronal and synaptic plasticity, ultimately affecting cognitive ability. Here we briefly examine the role of astrocytes in spine alterations and more specifically the involvement of astrocyte-secreted thrombospondin 1 (TSP-1) deficits in spine and synaptic pathology in DS.


Assuntos
Espinhas Dendríticas/patologia , Síndrome de Down/patologia , Sinapses/patologia , Trombospondina 1/deficiência , Animais , Modelos Animais de Doenças , Síndrome de Down/etiologia , Humanos
18.
Aging Cell ; 17(5): e12812, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30028071

RESUMO

Mounting evidence implicates chronic oxidative stress as a critical driver of the aging process. Down syndrome (DS) is characterized by a complex phenotype, including early senescence. DS cells display increased levels of reactive oxygen species (ROS) and mitochondrial structural and metabolic dysfunction, which are counterbalanced by sustained Nrf2-mediated transcription of cellular antioxidant response elements (ARE). Here, we show that caspase 3/PKCδdependent activation of the Nrf2 pathway in DS and Dp16 (a mouse model of DS) cells is necessary to protect against chronic oxidative damage and to preserve cellular functionality. Mitochondria-targeted catalase (mCAT) significantly reduced oxidative stress, restored mitochondrial structure and function, normalized replicative and wound healing capacity, and rendered the Nrf2-mediated antioxidant response dispensable. These results highlight the critical role of Nrf2/ARE in the maintenance of DS cell homeostasis and validate mitochondrial-specific interventions as a key aspect of antioxidant and antiaging therapies.


Assuntos
Síndrome de Down/metabolismo , Síndrome de Down/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Caspase 3/metabolismo , Catalase/metabolismo , Proliferação de Células , Sobrevivência Celular , Citoproteção , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Biológicos , Proteína Quinase C-delta/metabolismo , Estabilidade Proteica , Transdução de Sinais , Cicatrização
19.
J Neurosci ; 26(22): 6011-8, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16738244

RESUMO

Characterization of soluble oligomeric amyloid beta (Abeta) species in the brains of Alzheimer's disease (AD) patients and transgenic models has raised the possibility that different conformations of Abeta may contribute to AD pathology via different mechanisms. To characterize the toxic effect of different Abeta conformations, we tested side by side the effect of well characterized Abeta oligomers (AbetaOs), Abeta-derived diffusible ligands (ADDLs), and fibrillar Abeta (Abetaf) preparations in human cortical neurons (HCNs). Both AbetaOs and ADDLs bind rapidly and with high affinity to synaptic contacts and cellular membranes. AbetaOs (5 microm) induced rapid and massive neuronal death. Calcium influx accelerated, but was not required for, AbetaO toxicity. AbetaOs elicited a stereotyped succession of cellular changes consistent with the activation of a mitochondrial death apoptotic pathway. At low concentrations AbetaOs caused chronic and subtler mitochondrial alterations but minimal cell death. ADDLs induced similar toxic changes as AbetaOs but on a fivefold longer time scale. Higher concentrations of Abetaf and longer incubation times were required to produce widespread neuritic dystrophy but modest HCN cell death. Thus various Abeta species may play relevant roles in AD, causing neurotoxicity by distinct non-overlapping mechanisms affecting neuronal function and viability over multiple time courses.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Neurotoxinas , Doença de Alzheimer/patologia , Apoptose , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/patologia , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Conformação Proteica , Sinapses/fisiologia
20.
J Neurosci ; 26(24): 6533-42, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16775141

RESUMO

Deposition of fibrillar amyloid beta (fAbeta) plays a critical role in Alzheimer's disease (AD). We have shown recently that fAbeta-induced dystrophy requires the activation of focal adhesion proteins and the formation of aberrant focal adhesion structures, suggesting the activation of a mechanism of maladaptative plasticity in AD. Focal adhesions are actin-based structures that provide a structural link between the extracellular matrix and the cytoskeleton. To gain additional insight in the molecular mechanism of neuronal degeneration in AD, here we explored the involvement of LIM kinase 1 (LIMK1), actin-depolymerizing factor (ADF), and cofilin in Abeta-induced dystrophy. ADF/cofilin are actin-binding proteins that play a central role in actin filament dynamics, and LIMK1 is the kinase that phosphorylates and thereby inhibits ADF/cofilin. Our data indicate that treatment of hippocampal neurons with fAbeta increases the level of Ser3-phosphorylated ADF/cofilin and Thr508-phosphorylated LIMK1 (P-LIMK1), accompanied by a dramatic remodeling of actin filaments, neuritic dystrophy, and neuronal cell death. A synthetic peptide, S3 peptide, which acts as a specific competitor for ADF/cofilin phosphorylation by LIMK1, inhibited fAbeta-induced ADF/cofilin phosphorylation, preventing actin filament remodeling and neuronal degeneration, indicating the involvement of LIMK1 in Abeta-induced neuronal degeneration in vitro. Immunofluorescence analysis of AD brain showed a significant increase in the number of P-LIMK1-positive neurons in areas affected with AD pathology. P-LIMK1-positive neurons also showed early signs of AD pathology, such as intracellular Abeta and pretangle phosphorylated tau. Thus, LIMK1 activation may play a key role in AD pathology.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Degeneração Neural/induzido quimicamente , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Proteínas Quinases/metabolismo , Doença de Alzheimer/complicações , Análise de Variância , Animais , Western Blotting/métodos , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Interações Medicamentosas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Imunofluorescência/métodos , Hipocampo/citologia , Humanos , Quinases Lim , Degeneração Neural/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA