Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 471(7340): 608-11, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21455175

RESUMO

Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).

2.
Proc Int Astron Union ; 13: 233-234, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30568718

RESUMO

We have begun a project aimed at providing a large consistent set of well- vetted solar analogs in order to address questions of stellar rotation, activity, dynamos, and gyrochronology. We make use of the K2 mission fields to obtain precise photometric time series, supplemented by ground-based photometric and spectroscopic data for promising candidates. From this data we will derive rotation periods, spot coverages, and flare rates for a well- defined and well-calibrated sample of solar analogs.

3.
Science ; 333(6049): 1602-6, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21921192

RESUMO

We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.

4.
Science ; 327(5968): 977-80, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20056856

RESUMO

The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA