Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Physiol ; 231(2): 473-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26189652

RESUMO

Aberrant expression of the transcription factor RUNX2 in prostate cancer has a number of important consequences including increased resistance to apoptosis, invasion and metastasis to bone. We previously demonstrated that hypoxia up-regulated RUNX2 in tumour cells, which in turn up-regulated the anti-apoptotic factor Bcl-2. Here, we investigate the impact of nitric oxide (NO) on RUNX2 and Bcl-2 expression in prostate cancer and further, how RUNX2 over-expression can impact tumour growth, angiogenesis and oxygenation in vivo. The effect of NO levels on RUNX2 and thus Bcl-2 expression was examined in prostate cancer cells in vitro using methods including gene and protein expression analyses, nitrite quantitation, protein-DNA interaction assays (ChIP) and viability assays (XTT). The effect of RUNX2 over-expression on tumour physiology (growth, oxygenation and angiogenesis) was also assessed in vivo using LNCaP xenografts. A low (but not high) concentration of NO (10 µM) induced expression of RUNX2 and Bcl-2, conferring resistance to docetaxel. These effects were induced via the ERK and PI3K pathways and were dependent on intact AP-1 binding sites in the RUNX2 promoter. RUNX2 over-expression in LNCaP tumours in vivo decreased the time to tumour presentation and increased tumour growth. Moreover, these tumours exhibited improved tumour angiogenesis and oxygenation. Low levels of NO increase expression of RUNX2 and Bcl-2 in LNCaP prostate tumour cells, and in vivo up-regulation of RUNX2 created tumours with a more malignant phenotype. Collectively, our data reveals the importance of NO-regulation of key factors in prostate cancer disease progression.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Óxido Nítrico/metabolismo , Neoplasias da Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Regulação para Cima
2.
Drug Deliv Transl Res ; 14(1): 177-190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37454029

RESUMO

Vat photopolymerisation (VP) three-dimensional printing (3DP) has attracted great attention in many different fields, such as electronics, pharmaceuticals, biomedical devices and tissue engineering. Due to the low availability of biocompatible photocurable resins, its application in the healthcare sector is still limited. In this work, we formulate photocurable resins based on urethane dimethacrylate (UDMA) combined with three different difunctional methacrylic diluents named ethylene glycol dimethacrylate (EGDMA), di(ethylene glycol) dimethacrylate (DEGDMA) or tri(ethylene glycol) dimethacrylate (TEGDMA). The resins were tested for viscosity, thermal behaviour and printability. After printing, the 3D printed specimens were measured with a digital calliper in order to investigate their accuracy to the digital model and tested with FT-IR, TGA and DSC. Their mechanical properties, contact angle, water sorption and biocompatibility were also evaluated. The photopolymerizable formulations investigated in this work achieved promising properties so as to be suitable for tissue engineering and other biomedical applications.


Assuntos
Resinas Compostas , Estereolitografia , Resinas Compostas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Impressão Tridimensional
3.
Int J Cancer ; 132(6): 1323-32, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22915157

RESUMO

Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment, hypoxia is known to drive malignant progression. Our study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold (DSF) chambers were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide-treated and vehicle-only-treated tumours were re-established in vitro, and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2 mg/kg/day) decreased tumour oxygenation by 45% within 24 hr, reaching a nadir of 0.09% oxygen (0.67 ± 0.06 mmHg) by Day 7; this persisted until Day 14 when it increased up to Day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at Days 7 and 14 with revascularisation occurring by Day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50 mg/kg, single dose) caused greater tumour growth delay than bicalutamide alone. Our study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit.


Assuntos
Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Antraquinonas/administração & dosagem , Hipóxia Celular , Nitrilas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Compostos de Tosil/farmacologia , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Fatores de Tempo
4.
J Pers Med ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467153

RESUMO

Radiotherapy (RT) is a primary treatment modality for a number of cancers, offering potentially curative outcomes. Despite its success, tumour cells can become resistant to RT, leading to disease recurrence. Components of the tumour microenvironment (TME) likely play an integral role in managing RT success or failure including infiltrating immune cells, the tumour vasculature and stroma. Furthermore, genomic profiling of the TME could identify predictive biomarkers or gene signatures indicative of RT response. In this review, we will discuss proposed mechanisms of radioresistance within the TME, biomarkers that may predict RT outcomes, and future perspectives on radiation treatment in the era of personalised medicine.

5.
JBMR Plus ; 3(3): e10125, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30918917

RESUMO

In the advanced stages of many cancers, tumor cells disseminate from the primary site and colonize distant locations such as the skeleton. These disseminated tumor cells colonizing bone can evade treatments and survive for prolonged periods in a dormant state before becoming reactivated to form overt metastases. The precise interactions between tumor cells and the bone microenvironment that promote survival, dormancy, and reactivation are currently unknown; as a result, bone metastases remain incurable. In this review we discuss the unique cellular and microenvironmental features of endosteal bone that tumor cells engage with to persist and survive, and ultimately reactivate and proliferate. Specifically, we provide a detailed summary of current perspectives on the processes of tumor cell colonization of the skeleton, and the endosteal bone cells as critical controllers of the dormant cancer cell phenotype, as well as relevant microenvironmental effects such as hypoxia. Evidence for the role of the osteoclast in controlling dormant cancer cell reactivation in bone is highlighted, preceding a discussion of therapeutics targeting the bone microenvironment, including anti-RANK ligand and bisphosphonate therapies and their potential utility in preventing tumor cell reactivation in addition to protecting bone from tumor-induced destruction. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

6.
Cancers (Basel) ; 11(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835751

RESUMO

Hypoxia is one of the most common phenotypes of malignant tumours. Hypoxia leads to the increased activity of hypoxia-inducible factors (HIFs), which regulate the expression of genes controlling a raft of pro-tumour phenotypes. These include maintenance of the cancer stem cell compartment, epithelial-mesenchymal transition (EMT), angiogenesis, immunosuppression, and metabolic reprogramming. Hypoxia can also contribute to the tumour progression in a HIF-independent manner via the activation of a complex signalling network pathway, including JAK-STAT, RhoA/ROCK, NF-κB and PI3/AKT. Recent studies suggest that nanotherapeutics offer a unique opportunity to target the hypoxic microenvironment, enhancing the therapeutic window of conventional therapeutics. In this review, we summarise recent advances in understanding the impact of hypoxia on tumour progression, while outlining possible nanotherapeutic approaches for overcoming hypoxia-mediated resistance.

7.
Clin Cancer Res ; 23(7): 1797-1808, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697998

RESUMO

Purpose: To understand the role of hypoxia in prostate tumor progression and to evaluate the ability of the novel unidirectional hypoxia-activated prodrug OCT1002 to enhance the antitumor effect of bicalutamide.Experimental Design: The effect of OCT1002 on prostate cancer cells (LNCaP, 22Rv1, and PC3) was measured in normoxia and hypoxia in vitroIn vivo, tumor growth and lung metastases were measured in mice treated with bicalutamide, OCT1002, or a combination. Dorsal skin fold chambers were used to image tumor vasculature in vivo Longitudinal gene expression changes in tumors were analyzed using PCR.Results: Reduction of OCT1002 to its active form (OCT1001) decreased prostate cancer cell viability. In LNCaP-luc spheroids, OCT1002 caused increased apoptosis and decreased clonogenicity. In vivo, treatment with OCT1002 alone, or with bicalutamide, showed significantly greater tumor growth control and reduced lung metastases compared with controls. Reestablishment of the tumor microvasculature following bicalutamide-induced vascular collapse is inhibited by OCT1002. Significantly, the upregulation of RUNX2 and its targets caused by bicalutamide alone was blocked by OCT1002.Conclusions: OCT1002 selectively targets hypoxic tumor cells and enhances the antitumor efficacy of bicalutamide. Furthermore, bicalutamide caused changes in gene expression, which indicated progression to a more malignant genotype; OCT1002 blocked these effects, emphasizing that more attention should be attached to understanding genetic changes that may occur during treatment. Early targeting of hypoxic cells with OCT1002 can provide a means of inhibiting prostate tumor growth and malignant progression. This is of importance for the design and refinement of existing androgen-deprivation regimens in the clinic. Clin Cancer Res; 23(7); 1797-808. ©2016 AACR.


Assuntos
Antraquinonas/administração & dosagem , Etilenodiaminas/administração & dosagem , Proteínas de Neoplasias/genética , Pró-Fármacos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Anilidas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/administração & dosagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Compostos de Tosil/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Chem Commun (Camb) ; 48(67): 8332-4, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22790600

RESUMO

A Rose Bengal sonosensitiser has been covalently attached to a lipid microbubble and the resulting conjugate shown to produce higher levels of singlet oxygen, enhanced cytotoxicity in a cancer cell line and a greater reduction in tumour growth than the sonosensitiser alone.


Assuntos
Microbolhas/uso terapêutico , Neoplasias/terapia , Ultrassonografia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Modelos Biológicos , Estrutura Molecular , Rosa Bengala/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA