Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 565(7739): 377-381, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626974

RESUMO

To initiate infection, many viruses enter their host cells by triggering endocytosis following receptor engagement. However, the mechanisms by which non-enveloped viruses escape the endosome are poorly understood. Here we present near-atomic-resolution cryo-electron microscopy structures for feline calicivirus both undecorated and labelled with a soluble fragment of its cellular receptor, feline junctional adhesion molecule A. We show that VP2, a minor capsid protein encoded by all caliciviruses1,2, forms a large portal-like assembly at a unique three-fold axis of symmetry, following receptor engagement. This assembly-which was not detected in undecorated virions-is formed of twelve copies of VP2, arranged with their hydrophobic N termini pointing away from the virion surface. Local rearrangement at the portal site leads to the opening of a pore in the capsid shell. We hypothesize that the portal-like assembly functions as a channel for the delivery of the calicivirus genome, through the endosomal membrane, into the cytoplasm of a host cell, thereby initiating infection. VP2 was previously known to be critical for the production of infectious virus3; our findings provide insights into its structure and function that advance our understanding of the Caliciviridae.


Assuntos
Calicivirus Felino/metabolismo , Calicivirus Felino/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Molécula A de Adesão Juncional/ultraestrutura , Receptores Virais/ultraestrutura , Montagem de Vírus , Animais , Calicivirus Felino/química , Calicivirus Felino/crescimento & desenvolvimento , Proteínas do Capsídeo/química , Gatos , Linhagem Celular , Endossomos/metabolismo , Endossomos/virologia , Genoma Viral , Interações Hidrofóbicas e Hidrofílicas , Molécula A de Adesão Juncional/química , Molécula A de Adesão Juncional/metabolismo , Modelos Moleculares , Receptores Virais/química , Receptores Virais/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
2.
EMBO J ; 39(7): e103234, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134144

RESUMO

Centromeres are microtubule attachment sites on chromosomes defined by the enrichment of histone variant CENP-A-containing nucleosomes. To preserve centromere identity, CENP-A must be escorted to centromeres by a CENP-A-specific chaperone for deposition. Despite this essential requirement, many eukaryotes differ in the composition of players involved in centromere maintenance, highlighting the plasticity of this process. In humans, CENP-A recognition and centromere targeting are achieved by HJURP and the Mis18 complex, respectively. Using X-ray crystallography, we here show how Drosophila CAL1, an evolutionarily distinct CENP-A histone chaperone, binds both CENP-A and the centromere receptor CENP-C without the requirement for the Mis18 complex. While an N-terminal CAL1 fragment wraps around CENP-A/H4 through multiple physical contacts, a C-terminal CAL1 fragment directly binds a CENP-C cupin domain dimer. Although divergent at the primary structure level, CAL1 thus binds CENP-A/H4 using evolutionarily conserved and adaptive structural principles. The CAL1 binding site on CENP-C is strategically positioned near the cupin dimerisation interface, restricting binding to just one CAL1 molecule per CENP-C dimer. Overall, by demonstrating how CAL1 binds CENP-A/H4 and CENP-C, we provide key insights into the minimalistic principles underlying centromere maintenance.


Assuntos
Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Centrômero/química , Centrômero/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Ligação Proteica
3.
Nucleic Acids Res ; 50(19): 11109-11127, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36200825

RESUMO

Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Ilhas Genômicas/genética , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
4.
J Biol Chem ; 293(26): 10071-10083, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29764934

RESUMO

The histone chaperone complex facilitates chromatin transcription (FACT) plays important roles in DNA repair, replication, and transcription. In the formation of this complex, structure-specific recognition protein-1 (SSRP1) heterodimerizes with suppressor of Ty 16 (SPT16). SSRP1 also has SPT16-independent functions, but how SSRP1 functions alone remains elusive. Here, using analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) techniques, we characterized human SSRP1 and that from the amoeba Dictyostelium discoideum and show that both orthologs form an elongated homodimer in solution. We found that substitutions in the SSRP1 pleckstrin homology domain known to bind SPT16 also disrupt SSRP1 homodimerization. Moreover, AUC and SAXS analyses revealed that SSRP1 homodimerization and heterodimerization with SPT16 (resulting in FACT) involve the same SSRP1 surface, namely the PH2 region, and that the FACT complex contains only one molecule of SSRP1. These observations suggest that SSRP1 homo- and heterodimerization might be mutually exclusive. Moreover, isothermal titration calorimetry analyses disclosed that SSRP1 binds both histones H2A-H2B and H3-H4 and that disruption of SSRP1 homodimerization decreases its histone-binding affinity. Together, our results provide evidence for regulation of SSRP1 by homodimerization and suggest a potential role for homodimerization in facilitating SPT16-independent functions of SSRP1.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos , Dictyostelium , Humanos , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína
5.
Eur Biophys J ; 47(7): 693-696, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30218114

RESUMO

Analytical ultracentrifugation (AUC) remains a highly versatile and widely applicable tool for the analysis of macromolecules and their interactions. The current state-of-the-art was demonstrated at a recent international meeting held in Glasgow, Scotland, in July 2017, the 23rd International Analytical Ultracentrifugation Workshop and Symposium. This special issue showcases the reports made at the meeting, which concerned the application of AUC to a wide range of topics in biochemical and polymer science including antibody and membrane protein characterisation, and protein-carbohydrate interactions. Presentations on development and testing of new instrumentation and methods of analysis were a particular feature of the meeting, including the optimisation of experimental protocols, and the latest optimised computational approaches to experimental simulation and the modelling of macromolecular structures.


Assuntos
Ultracentrifugação , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo
6.
Subcell Biochem ; 83: 523-550, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28271489

RESUMO

The family of 2-oxoacid dehydrogenase complexes (2-OADC), typified by the pyruvate dehydrogenase multi-enzyme complex (PDC) as its most prominent member, are massive molecular machines (Mr, 4-10 million) controlling key steps in glucose homeostasis (PDC), citric acid cycle flux (OGDC, 2-oxoglutarate dehydrogenase) and the metabolism of the branched-chain amino acids, leucine, isoleucine and valine (BCOADC, branched-chain 2-OADC). These highly organised mitochondrial arrays, composed of multiple copies of three separate enzymes, have been widely studied as paradigms for the analysis of enzyme cooperativity, substrate channelling, protein-protein interactions and the regulation of activity by phosphorylation . This chapter will highlight recent advances in our understanding of the structure-function relationships, the overall organisation and the transport and assembly of PDC in particular, focussing on both native and recombinant forms of the complex and their individual components or constituent domains. Biophysical approaches, including X-ray crystallography (MX), nuclear magnetic resonance spectroscopy (NMR), cryo-EM imaging, analytical ultracentrifugation (AUC) and small angle X-ray and neutron scattering (SAXS and SANS), have all contributed significant new information on PDC subunit organisation, stoichiometry, regulatory mechanisms and mode of assembly. Moreover, the recognition of specific genetic defects linked to PDC deficiency, in combination with the ability to analyse recombinant PDCs housing both novel naturally-occurring and engineered mutations, have all stimulated renewed interest in these classical metabolic assemblies. In addition, the role played by PDC, and its constituent proteins, in certain disease states will be briefly reviewed, focussing on the development of new and exciting areas of medical and immunological research.


Assuntos
Doença , Saúde , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Humanos
7.
Biochem J ; 473(18): 2799-812, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402794

RESUMO

Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Šstructure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.


Assuntos
Antibacterianos/química , Endonucleases/química , Sequência de Aminoácidos , Biofísica , Conformação Proteica , Homologia de Sequência de Aminoácidos
8.
Biochem J ; 473(15): 2345-58, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252387

RESUMO

Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right.


Assuntos
Antibacterianos/isolamento & purificação , Pseudomonas aeruginosa/química , Piocinas/isolamento & purificação , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Dicroísmo Circular , Clonagem Molecular , Pneumopatias/tratamento farmacológico , Camundongos , Piocinas/química , Piocinas/farmacologia , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Difração de Raios X
9.
PLoS Pathog ; 10(2): e1003898, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516380

RESUMO

Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of D-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing D-rhamnose and not D-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.


Assuntos
Bacteriocinas/metabolismo , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Ramnose/metabolismo , Sequência de Aminoácidos , Bacteriocinas/química , Immunoblotting , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/química , Ramnose/química
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1478-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26143919

RESUMO

Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Elastase Pancreática/metabolismo , alfa-Macroglobulinas/química , alfa-Macroglobulinas/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Suínos
11.
Mol Microbiol ; 93(2): 234-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24865810

RESUMO

The colicin-like bacteriocins are potent protein antibiotics that have evolved to efficiently cross the outer membrane of Gram-negative bacteria by parasitizing nutrient uptake systems. We have structurally characterized the colicin M-like bacteriocin, pectocin M2, which is active against strains of Pectobacterium spp. This unusual bacteriocin lacks the intrinsically unstructured translocation domain that usually mediates translocation of these bacteriocins across the outer membrane, containing only a single globular ferredoxin domain connected to its cytotoxic domain by a flexible α-helix, which allows it to adopt two distinct conformations in solution. The ferredoxin domain of pectocin M2 is homologous to plant ferredoxins and allows pectocin M2 to parasitize a system utilized by Pectobacterium to obtain iron during infection of plants. Furthermore, we identify a novel ferredoxin-containing bacteriocin pectocin P, which possesses a cytotoxic domain homologous to lysozyme, illustrating that the ferredoxin domain acts as a generic delivery module for cytotoxic domains in Pectobacterium.


Assuntos
Bacteriocinas/química , Pectobacterium/química , Transporte Proteico , Sequência de Aminoácidos , Bacteriocinas/metabolismo , Colicinas/química , Cristalização , Cristalografia por Raios X , Ferredoxinas/química , Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/química , Conformação Proteica , Estrutura Terciária de Proteína
12.
Mol Microbiol ; 93(1): 199-211, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24846743

RESUMO

Classical studies have focused on the role that individual regulators play in controlling virulence gene expression. An emerging theme, however, is that bacterial metabolism also plays a key role in this process. Our previous work identified a series of proteins that were implicated in the regulation of virulence. One of these proteins was AdhE, a bi-functional acetaldehyde-CoA dehydrogenase and alcohol dehydrogenase. Deletion of its gene (adhE) resulted in elevated levels of extracellular acetate and a stark pleiotropic phenotype: strong suppression of the Type Three Secretion System (T3SS) and overexpression of non-functional flagella. Correspondingly, the adhE mutant bound poorly to host cells and was unable to swim. Furthermore, the mutant was significantly less virulent than its parent when tested in vivo, which supports the hypothesis that attachment and motility are central to the colonization process. The molecular basis by which AdhE affects virulence gene regulation was found to be multifactorial, involving acetate-stimulated transcription of flagella expression and post-transcriptional regulation of the T3SS through Hfq. Our study reveals fascinating insights into the links between bacterial physiology, the expression of virulence genes, and the underlying molecular mechanism mechanisms by which these processes are regulated.


Assuntos
Acetatos/metabolismo , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Álcool Desidrogenase/genética , Aldeído Oxirredutases/genética , Animais , Modelos Animais de Doenças , Infecções por Escherichia coli/patologia , Escherichia coli O157/enzimologia , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Coelhos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Eur Biophys J ; 44(6): 417-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26066679

RESUMO

Hydrodynamic characterisation of (bio)macromolecules is a well-established field. Observables linked to translational friction, such as the translational diffusion (Dt(0)(20,w)) and sedimentation (s(0)(20,w)) coefficients, are the most commonly used parameters. Both can be computed starting from high-resolution structures, with several methods available. We present here a comprehensive study of the performance of public-domain software, comparing the calculated Dt(0)(20,w) and s(0)(20,w) for a set of high-resolution structures (ranging in mass from 12,358 to 465,557 Da) with their critically appraised literature experimental counterparts. The methods/programs examined are AtoB, SoMo, BEST, Zeno (all implemented within the US-SOMO software suite) and HYDROPRO. Clear trends emerge: while all programs can reproduce Dt(0)(20,w) on average to within ±5% (range -8 to +7%), SoMo and AtoB slightly overestimate it (average +2 and +1%, range -2 to +7 and -4 to +5%, respectively), and BEST and HYDROPRO underestimate it slightly more (average -3 and -4%, range -7 to +2 and -8 to +2%, respectively). Similar trends are observed with s(0)(20,w), but the comparison is likely affected by the necessary inclusion of the partial specific volume in the computations. The somewhat less than ideal performances could result from the hydration treatment in BEST and HYDROPRO, and the bead overlap removal in SoMo and AtoB. Interestingly, a combination of SoMo overlapping bead models followed by Zeno computation produced better results, with a 0% average error (range -4 to +4%). Indeed, this might become the method of choice, once computational speed considerations now favouring the 5 Å-grid US-SOMO AtoB approach are overcome.


Assuntos
Hidrodinâmica , Substâncias Macromoleculares/química , Software , Difusão
14.
Biochem J ; 461(2): 291-304, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24779861

RESUMO

Gram-negative bacteria use the Type VI secretion system (T6SS) to inject toxic proteins into rival bacteria or eukaryotic cells. However, the mechanism of the T6SS is incompletely understood. In the present study, we investigated a conserved component of the T6SS, TssK, using the antibacterial T6SS of Serratia marcescens as a model system. TssK was confirmed to be essential for effector secretion by the T6SS. The native protein, although not an integral membrane protein, appeared to localize to the inner membrane, consistent with its presence within a membrane-anchored assembly. Recombinant TssK purified from S. marcescens was found to exist in several stable oligomeric forms, namely trimer, hexamer and higher-order species. Native-level purification of TssK identified TssF and TssG as interacting proteins. TssF and TssG, conserved T6SS components of unknown function, were required for T6SS activity, but not for correct localization of TssK. A complex containing TssK, TssF and TssG was subsequently purified in vitro, confirming that these three proteins form a new subcomplex within the T6SS. Our findings provide new insight into the T6SS assembly, allowing us to propose a model whereby TssK recruits TssFG into the membrane-associated T6SS complex and different oligomeric states of TssK may contribute to the dynamic mechanism of the system.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/química , Serratia marcescens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serratia marcescens/química , Serratia marcescens/genética
15.
J Biol Chem ; 286(34): 29922-31, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21724850

RESUMO

A class of anti-virulence compounds, the salicylidene acylhydrazides, has been widely reported to block the function of the type three secretion system of several Gram-negative pathogens by a previously unknown mechanism. In this work we provide the first identification of bacterial proteins that are targeted by this group of compounds. We provide evidence that their mode of action is likely to result from a synergistic effect arising from a perturbation of the function of several conserved proteins. We also examine the contribution of selected target proteins to the pathogenicity of Yersinia pseudotuberculosis and to expression of virulence genes in Escherichia coli O157.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157 , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hidrazinas/farmacologia , Fatores de Virulência/biossíntese , Yersinia pseudotuberculosis , Antibacterianos/química , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidade , Hidrazinas/química , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-22691780

RESUMO

Thiol peroxidase (Tpx) is an atypical 2-Cys peroxiredoxin, which has been suggested to be important for cell survival and virulence in Gram-negative pathogens. The structure of a catalytically inactive version of this protein in an orthorhombic crystal form has been determined by molecular replacement. Structural alignments revealed that Tpx is conserved. Analysis of the crystal packing shows that the linker region of the affinity tag is important for formation of the crystal lattice.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas Periplásmicas/química , Peroxidases/química , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Periplásmicas/genética , Peroxidases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia Estrutural de Proteína
17.
Biochem J ; 437(3): 565-74, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21627584

RESUMO

Crucial to glucose homoeostasis in humans, the hPDC (human pyruvate dehydrogenase complex) is a massive molecular machine comprising multiple copies of three distinct enzymes (E1-E3) and an accessory subunit, E3BP (E3-binding protein). Its icosahedral E2/E3BP 60-meric 'core' provides the central structural and mechanistic framework ensuring favourable E1 and E3 positioning and enzyme co-operativity. Current core models indicate either a 48E2+12E3BP or a 40E2+20E3BP subunit composition. In the present study, we demonstrate clear differences in subunit content and organization between the recombinant hPDC core (rhPDC; 40E2+20E3BP), generated under defined conditions where E3BP is produced in excess, and its native bovine (48E2+12E3BP) counterpart. The results of the present study provide a rational basis for resolving apparent differences between previous models, both obtained using rhE2/E3BP core assemblies where no account was taken of relative E2 and E3BP expression levels. Mathematical modelling predicts that an 'average' 48E2+12E3BP core arrangement allows maximum flexibility in assembly, while providing the appropriate balance of bound E1 and E3 enzymes for optimal catalytic efficiency and regulatory fine-tuning. We also show that the rhE2/E3BP and bovine E2/E3BP cores bind E3s with a 2:1 stoichiometry, and propose that mammalian PDC comprises a heterogeneous population of assemblies incorporating a network of E3 (and possibly E1) cross-bridges above the core surface.


Assuntos
Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Animais , Bovinos , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Escherichia coli , Modelos Químicos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes
18.
Biochem Biophys Res Commun ; 416(1-2): 140-5, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22100650

RESUMO

Translation initiation factor 5B (IF5B) is required for initiation of protein synthesis. The solution structure of archaeal IF5B (aIF5B) was analysed by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) and was indicated to be in both monomeric and dimeric form. Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) of aIF5B indicated that aIF5B forms irreversible dimers in solution but only to a maximum of 5.0-6.8% dimer. Sedimentation velocity (SV) AUC at higher speed also indicated the presence of two species, and the sedimentation coefficients s(20,w)(0) were determined to be 3.64 and 5.51±0.29 S for monomer and dimer, respectively. The atomic resolution (crystallographic) structure of aIF5B (Roll-Mecak et al. [6]) was used to model monomer and dimer, and theoretical sedimentation coefficients for these models were computed (3.89 and 5.63 S, respectively) in good agreement with the sedimentation coefficients obtained from SV analysis. Thus, the structure of aIF5B in solution must be very similar to the atomic resolution structure of aIF5B. SAXS data were acquired in the same buffer with the addition of 2% glycerol to inhibit dimerization, and the resultant monomeric aIF5B in solution did indeed adopt a structure very similar to the one reported earlier for the protein in crystalline form. The p(r) function indicated an elongated conformation supported by a radius of gyration of 37.5±0.2 Å and a maximum dimension of ~130 Å. The effects of glycerol on the formation of dimers are discussed. This new model of aIF5B in solution shows that there are universal structural differences between aIF5B and the homologous protein IF2 from Escherichia coli.


Assuntos
Proteínas Arqueais/química , Fatores de Iniciação de Peptídeos/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
19.
Extremophiles ; 15(3): 327-36, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21424517

RESUMO

Using citrate synthase from the hyperthermophile Pyrococcus furiosus (PfCS) as our test molecule, we show through guanidine hydrochloride-induced unfolding that the dimer separates into folded, but inactive, monomers before individual subunit unfolding takes place. Given that forces across the dimer interface are vital for thermostability, a robust computational method was derived that uses the University of Houston Brownian Dynamics (UHBD) program to calculate both the hydrophobic and electrostatic contribution to the dimerisation energy at 100°C. The results from computational and experimental determination of the lowered stability of interface mutants were correlated, being both of the same order of magnitude and placing the mutant proteins in the same order of stability. This computational method, optimised for hyperthermophilic molecules and tested in the laboratory, after further testing on other examples, could be of widespread use in the prediction of thermostabilising mutations in other oligomeric proteins for which dissociation is the first step in unfolding.


Assuntos
Proteínas Arqueais/química , Citrato (si)-Sintase/química , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Simulação por Computador , Estabilidade Enzimática , Guanidina/química , Temperatura Alta , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Pyrococcus furiosus/genética , Espectrometria de Fluorescência , Eletricidade Estática , Relação Estrutura-Atividade , Propriedades de Superfície , Ultracentrifugação
20.
Arch Biochem Biophys ; 493(2): 157-68, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19853574

RESUMO

The shape and solution properties of fibrinogen are affected by the location of the C-terminal portion of the Aalpha chains, which is presently still controversial. We have measured the hydrodynamic properties of a human fibrinogen fraction with these appendages mostly intact, of chicken fibrinogen, where they lack 11 characteristic 13-amino acids repeats, and of human fragment X, a plasmin early degradation product in which they have been removed. The human fibrinogen/fragment X samples were extensively characterized by SDS-PAGE/Western blotting and mass spectrometry, allowing their composition to be precisely determined. The solution properties of all samples were then investigated by analytical ultracentrifugation and size-exclusion HPLC coupled with multi-angle light scattering and differential pressure viscometry detectors. The measured parameters suggest that the extra repeats have little influence on the overall fibrinogen conformation, while a significant change is brought about by the removal of the C-terminal portion of the Aalpha chains beyond residue Aalpha200.


Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/química , Animais , Galinhas , Fibrinolisina/química , Humanos , Espectrometria de Massas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA