Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6587, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329023

RESUMO

We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.


Assuntos
Campos Magnéticos , Magnetismo , Humanos
2.
Adv Mater ; 33(25): e2008751, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33969551

RESUMO

Origami utilizes orchestrated transformation of soft 2D structures into complex 3D architectures, mimicking shapes and functions found in nature. In contrast to origami in nature, synthetic origami lacks the ability to monitor the environment and correspondingly adjust its behavior. Here, magnetic origami actuators with capabilities to sense their orientation and displacement as well as detect their own magnetization state and readiness for supervised folding are designed, fabricated, and demonstrated. These origami actuators integrate photothermal heating and magnetic actuation by using composite thin films (≈60 µm thick) of shape-memory polymers with embedded magnetic NdFeB microparticles. Mechanically compliant magnetic field sensors, known as magnetosensitive electronic skins, are laminated on the surface of the soft actuators. These ultrathin actuators accomplish sequential folding and recovery, with hinge locations programmed on the fly. Endowing mechanically active smart materials with cognition is an important step toward realizing intelligent, stimuli-responsive structures.

3.
Adv Mater ; 33(12): e2005521, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533129

RESUMO

Highly compliant electronics, naturally conforming to human skin, represent a paradigm shift in the interplay with the surroundings. Solution-processable printing technologies are yet to be developed to comply with requirements to mechanical conformability of on-skin appliances. Here, it is demonstrated that high-performance spintronic elements can be printed on ultrathin 3 µm thick polymeric foils enabling the mechanically imperceptible printed magnetoelectronics, which can adapt to the periodic buckling surface to be biaxially stretched over 100%. They constitute the first example of printed and stretchable giant magnetoresistive sensors, revealing 2 orders of magnitude improvements in mechanical stability and sensitivity at small magnetic fields, compared to the state-of-the-art printed magnetoelectronics. The key enabler of this performance enhancement is the use of elastomeric triblock copolymers as a binder for the magnetosensitive paste. Even when bent to a radius of 16 µm, the sensors printed on ultrathin foils remain intact and possess unmatched sensitivity for printed magnetoelectronics of 3 T-1 in a low magnetic field of 0.88 mT. The compliant printed sensors can be used as components of on-skin interactive electronics as it is demonstrated with a touchless control of virtual objects including zooming in and out of interactive maps and scrolling through electronic documents.

4.
Nat Commun ; 10(1): 4405, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562319

RESUMO

The emergence of smart electronics, human friendly robotics and supplemented or virtual reality demands electronic skins with both tactile and touchless perceptions for the manipulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with a compliant magnetic microelectromechanical system able to transduce both tactile-via mechanical pressure-and touchless-via magnetic fields-stimulations simultaneously. The magnetic microelectromechanical system separates electric signals from tactile and touchless interactions into two different regions, allowing the electronic skins to unambiguously distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes the interference from non-relevant objects and enables signal-programmable interactions. Ultimately, the magnetic microelectromechanical system enables complex interplay with physical objects enhanced with virtual content data in augmented reality, robotics, and medical applications.


Assuntos
Fenômenos Fisiológicos da Pele , Percepção do Tato/fisiologia , Tato , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletricidade , Fenômenos Eletromagnéticos , Eletrônica/instrumentação , Eletrônica/métodos , Humanos , Magnetismo , Robótica , Transdutores
5.
Sci Adv ; 4(1): eaao2623, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376121

RESUMO

Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-µm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality.


Assuntos
Magnetismo , Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Robótica
6.
Adv Mater ; 27(7): 1274-80, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25523752

RESUMO

Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great interest for the rapidly developing market of -eMobility, for optimization of eMotors and magnetic bearings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA