Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 18(1): 55, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422064

RESUMO

BACKGROUND: Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. METHODS: The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. RESULTS: Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 µL/mL and 80 µL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 µL/mL. The aqueous extract showed a significant (p < 0.05) antiproliferative effect on hFB cells at a concentration of 4%, with cell proliferation percentage values of 73.56% and 20.59% by MTT method and Trypan Blue assay, respectively; the same effect was observed for the ethanolic extract at concentration from 0.06% to 0.25% using MTT method and at a concentration from 0.125% to 0.25% using Trypan Blue assay. In CHO-K1 cells an antiproliferative effect was observed at a concentration of 8% of aqueous extract and from 0.06% to 0.25% of ethanolic extract using the MTT method. CONCLUSION: These assays showed that low concentrations of essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.


Assuntos
Anti-Infecciosos/farmacologia , Inibidores do Crescimento/farmacologia , Ocimum/química , Óleos Voláteis/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Bactérias/efeitos dos fármacos , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fungos/efeitos dos fármacos , Inibidores do Crescimento/química , Inibidores do Crescimento/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Folhas de Planta/química
2.
ACS Omega ; 8(14): 12716-12729, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065078

RESUMO

Design and development of materials that couple synthetic and living components allow taking advantage of the complexity of biological systems within a controlled environment. However, their design and fabrication represent a challenge for material scientists since it is necessary to synthesize synthetic materials with highly specialized biocompatible and physicochemical properties. The design of synthetic-living materials (vita materials) requires materials capable of hosting cell ingrowth and maintaining cell viability for extended periods. Vita materials offer various advantages, from simplifying product purification steps to controlling cell metabolic activity and improving the resistance of biological systems to external stress factors, translating into reducing bioprocess costs and diversifying their industrial applications. Here, chitosan sponges, functionalized with Calendula officinalis hydroalcoholic extract, were synthesized using the freeze-drying method; they showed small pore sizes (7.58 µm), high porosity (97.95%), high water absorption (1695%), and thermal stability, which allows the material to withstand sterilization conditions. The sponges allowed integration of 58.34% of viable Saccharomyces cerevisiae cells, and the cell viability was conserved 12 h post-process (57.14%) under storage conditions [refrigerating temperature (4 °C) and without a nutrient supply]. In addition, the synthesized vita materials conserved their biocatalytic activity after 7 days of the integration process, which was evaluated through glucose consumption and ethanol production. The results in this paper describe the synthesis of complex vita materials and demonstrate that biochemically modified chitosan sponges can be used as a platform material to host living and metabolically active yeast with diverse applications as biocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA