Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Angew Chem Int Ed Engl ; 59(32): 13468-13472, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315516

RESUMO

The one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.

2.
J Am Chem Soc ; 140(41): 13156-13160, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30226772

RESUMO

A hydrolytically stable metal-organic framework (MOF) material, named KAUST-7', was derived from a structural phase change of KAUST-7 upon exposure to conditions akin to protonic conduction (363 K/95% relative humidity). KAUST 7' exhibited a superprotonic conductivity as evidenced by the impedance spectroscopic measurement revealing an exceptional conductivity up to 2.0 × 10-2 S cm-1 at 363 K and under 95% RH, a performance maintained over 7 days. Ab initio molecular dynamics simulations suggested that the water-mediated proton transport mechanism is governed by water assisted reorganization of the H-bond network involving the fluorine moieties in KAUST-7' and the guest water molecules. The notable level of performances combined with a very good hydrolytic stability positions KAUST-7' as a prospective proton-exchange membrane alternative to the commercial benchmark Nafion. Furthermore, the remarkable RH sensitivity of KAUST-7' conductivity, substantially higher than previously reported MOFs, offers great opportunities for deployment as a humidity sensor.

3.
Chem Soc Rev ; 46(11): 3402-3430, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28555216

RESUMO

The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

4.
Angew Chem Int Ed Engl ; 57(45): 14811-14816, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30230128

RESUMO

Membrane-based gas separations are energy efficient processes; however, major challenges remain to develop high-performance membranes enabling the replacement of conventional separation processes. Herein, a new fluorinated MOF-based mixed-matrix membrane is reported, which is formed by incorporating the MOF crystals into selected polymers via a facile mixed-matrix approach. By finely controlling the molecular transport in the channels through the MOF apertures tuned by metal pillars and at the MOF-polymer interfaces, the resulting fluorinated MOF-based membranes exhibit excellent molecular sieving properties. These materials significantly outperform state-of-the-art membranes for simultaneous removal of H2 S and CO2 from natural gas-a challenging and economically important application. The robust fluorinated MOFs (NbOFFIVE-1-Ni, AlFFIVE-1-Ni), pave a way to efficient membrane separation processes that require precise discrimination of closely sized molecules.

5.
J Am Chem Soc ; 138(29): 9301-7, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27388208

RESUMO

The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, namely, from confined spaces (<0.5%) and in particular from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the appropriate pore system (size, shape, and functionality), ideal for the effective and energy-efficient removal of trace carbon dioxide. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm(3) (STP) cm(-3)) for a physical adsorbent at 400 ppm of CO2 and 298 K. Practically, NbOFFIVE-1-Ni offers the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in conventional physical adsorbents but considerably lower than chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2 selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2 selectivity under practical carbon capture conditions. Pertinently, the notable hydrolytic stability positions NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

6.
Inorg Chem ; 50(17): 8367-74, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21823579

RESUMO

A zinc-based metal-organic framework Zn(2)(adb)(2)(dabco)·4.5 DMF (K) (DUT-30(Zn), DUT = Dresden University of Technology, adb = 9,10-anthracene dibenzoate, dabco =1,4-diazabicyclo[2.2.2]octane, DMF = N,N-dimethylformamide) was synthesized using a solvothermal route. This MOF exhibits six crystallographic guest dependent phases. Two of them were characterized via single crystal X-ray analysis. The as-synthesized phase K crystallizes in the orthorhombic space group Fmmm, with a = 9.6349(9), b = 26.235(3), and c = 28.821(4) Å and consists of two interpenetrated pillar-layer networks with pcu topology. When the substance loses 0.5 DMF molecules per formula unit, a phase transition from the kinetic phase K to a thermodynamic phase T occurs. Zn(2)(adb)(2)(dabco)·4 DMF (T) crystallizes in the tetragonal space group I4/mmm, with a = 19.5316(8) and c = 9.6779(3) Å. During the evacuation the DUT-30(Zn) undergoes again the structural transformation to A. The activated compound A shows the gate pressure effect in the low pressure region of nitrogen physisorption isotherm and has a BET surface area of 960 m(2 )g(-1) and a specific pore volume of 0.43 cm(3) g(-1). Furthermore, DUT-30(Zn) exhibits a hydrogen storage capacity of 1.12 wt % at 1 bar, a CO(2) uptake of 200 cm(3) g(-1) at -78 °C and 0.9 bar, and a n-butane uptake of 3.0 mmol·g(-1) at 20 °C. The N(2) adsorption process was monitored in situ via X-ray powder diffraction using synchrotron radiation. A low temperature induced transformation of phase A to phase V could be observed if the compound was cooled under vacuum to -196 °C. A further crystalline phase N could be identified if the framework was filled with nitrogen at -196 °C. Additionally, the treatment of activated phase A with water leads to the new phase W.

7.
Nat Commun ; 11(1): 6099, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257662

RESUMO

Energy-efficient approaches to propylene/propane separation such as molecular sieving are of considerable importance for the petrochemical industry. The metal organic framework NbOFFIVE-1-Ni adsorbs propylene but not propane at room temperature and atmospheric pressure, whereas the isostructural SIFSIX-3-Ni does not exclude propane under the same conditions. The static dimensions of the pore openings of both materials are too small to admit either guest, signalling the importance of host dynamics for guest entrance to and transport through the channels. We use ab initio calculations together with crystallographic and adsorption data to show that the dynamics of the two framework-forming units, polyatomic anions and pyrazines, govern both diffusion and separation. The guest diffusion occurs by opening of the flexible window formed by four pyrazines. In NbOFFIVE-1-Ni, (NbOF5)2- anion reorientation locates propane away from the window, which enhances propylene/propane separation.

8.
ACS Appl Mater Interfaces ; 11(1): 1706-1712, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525415

RESUMO

Conventional materials for gas/vapor sensing are limited to a single probe detection ability for specific analytes. However, materials capable of concurrent detection of two different probes in their respective harmful levels and using two types of sensing modes have yet to be explored. In particular, the concurrent detection of uncomfortable humidity levels and CO2 concentration (400-5000 ppm) in confined spaces is of extreme importance in a great variety of fields, such as submarine technology, aerospace, mining, and rescue operations. Herein, we report the deliberate construction and performance assessment of extremely sensitive sensors using an interdigitated electrode (IDE)-based capacitor and a quartz crystal microbalance (QCM) as transducing substrates. The unveiled sensors are able to simultaneously detect CO2 within the 400-5000 ppm range and relative humidity levels below 40 and above 60%, using two fluorinated metal-organic frameworks, namely, NbOFFIVE-1-Ni and AlFFIVE-1-Ni, fabricated as a thin film. Their subtle difference in a structure-adsorption relationship for H2O and CO2 was analyzed to unveil the corresponding structure-sensing property relationships using both QCM- and IDE-based sensing modes.

9.
Chem Commun (Camb) ; 54(52): 7251, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29915840

RESUMO

Correction for 'Topology meets MOF chemistry for pore-aperture fine tuning: ftw-MOF platform for energy-efficient separations via adsorption kinetics or molecular sieving' by Dong-Xu Xue et al., Chem. Commun., 2018, DOI: 10.1039/c8cc03841d.

10.
Chem Commun (Camb) ; 54(49): 6404-6407, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29872784

RESUMO

Herein we demonstrate how the combined use of the molecular building block (MBB) approach and reticular chemistry allows the fabrication of a highly stable, ultra-microporous metal-organic framework (MOF) that is an efficient sorbent for the challenging separation of propane/propylene.

11.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833740

RESUMO

The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

12.
Science ; 356(6339): 731-735, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28522529

RESUMO

Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

13.
Adv Mater ; 27(32): 4775-80, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26193346

RESUMO

A new hydrothermally stable Al polycarboxylate metal-organic framework (MOF) based on a heteroatom bio-derived aromatic spacer is designed through a template-free green synthesis process. It appears that in some test conditions this MOF outperforms the heat reallocation performances of commercial SAPO-34.

14.
ACS Nano ; 7(8): 7213-8, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23869817

RESUMO

Luminescent thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. Lanthanide-based materials are among the most versatile thermal probes used in luminescent nanothermometers. Here, nanorods of metal organic framework Tb0.99Eu0.01(BDC)1.5(H2O)2 (BDC = 1-4-benzendicarboxylate) have been prepared by the reverse microemulsion technique and characterized and their photoluminescence properties studied from room temperature to 318 K. Aqueous suspensions of these nanoparticles display an excellent performance as ratiometric luminescent nanothermometers in the physiological temperature (300-320 K) range.


Assuntos
Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Nanotecnologia/métodos , Emulsões , Desenho de Equipamento , Luminescência , Medições Luminescentes , Teste de Materiais , Nanotubos/química , Fotoquímica , Temperatura , Termômetros , Difração de Raios X
15.
Dalton Trans ; 41(20): 6232-41, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22488212

RESUMO

We present in this paper the structure resolution of a fluorinated inorganic-organic compound--Zn(3)Al(2)F(12)·[HAmTAZ](6)--by SMARTER crystallography, i.e. by combining powder X-ray diffraction crystallography, NMR crystallography and chemical modelling of crystal (structure optimization and NMR parameter calculations). Such an approach is of particular interest for this class of fluorinated inorganic-organic compound materials since all the atoms have NMR accessible isotopes ((1)H, (13)C, (15)N, (19)F, (27)Al, (67)Zn). In Zn(3)Al(2)F(12)·[HAmTAZ](6), (27)Al and high-field (19)F and (67)Zn NMR give access to the inorganic framework while (1)H, (13)C and (15)N NMR yield insights into the organic linkers. From these NMR experiments, parts of the integrant unit are determined and used as input data for the search of a structural model from the powder diffraction data. The optimization of the atomic positions and the calculations of NMR parameters ((27)Al and (67)Zn quadrupolar parameters and (19)F, (1)H, (13)C and (15)N isotropic chemical shifts) are then performed using a density functional theory (DFT) based code. The good agreement between experimental and DFT-calculated NMR parameters validates the proposed optimized structure. The example of Zn(3)Al(2)F(12)·[HAmTAZ](6) shows that structural models can be obtained in fluorinated hybrids by SMARTER crystallography on a polycrystalline powder with an accuracy similar to those obtained from single-crystal X-ray diffraction data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA