Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Scand J Clin Lab Invest ; 84(3): 154-159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38639268

RESUMO

Resolvin D1 (RvD1) is potentially associated with fetal growth retardation (FGR) through alleviating maternal inflammation and its linkage with several pregnancy complications. Thus, this study detected RvD1 levels at different trimesters of pregnancy, aiming to investigate its role in predicting FGR risk of elderly pregnant women. This prospective, observational cohort study enrolled 165 elderly pregnant women aged ≥35 years. Serum RvD1 was detected at 10-13 weeks (early pregnancy), 20-23 weeks (middle pregnancy), and 30-33 weeks (late pregnancy) of gestational week by enzyme-linked immunosorbent assay. RvD1 was varied among different trimesters of pregnancy in elderly pregnant women (p < 0.001). FGR occurred in 25 (15.2%) women in this study. RvD1 at early (p = 0.009), middle (p = 0.002), and late (p = 0.003) pregnancy was decreased in women with FGR versus those without. By multivariate analysis, RvD1 at middle pregnancy (odds ratio (OR): 0.477, p < 0.001), pre-pregnancy body mass index (OR: 0.763, p = 0.025), and gestational diabetes mellitus (yes versus no) (OR: 0.071, p = 0.031) were independently correlated with declined FGR risk. While age (OR: 1.382, p = 0.009) was independently associated with elevated risk of FGR. Furthermore, the combination of these independent factors as a predictive model exhibited a good potential for assessing FGR risk (area under the curve: 0.802, 95% confidence interval: 0.711-0.894). In conclusion, RvD1 at different trimesters of pregnancy is negatively linked with the risk of FGR, whose level at middle pregnancy serves as an independent factor for FGR risk in elderly pregnant women.


Assuntos
Ácidos Docosa-Hexaenoicos , Retardo do Crescimento Fetal , Trimestres da Gravidez , Humanos , Feminino , Gravidez , Retardo do Crescimento Fetal/sangue , Trimestres da Gravidez/sangue , Ácidos Docosa-Hexaenoicos/sangue , Estudos Prospectivos , Adulto , Fatores de Risco , Curva ROC , Idoso , Índice de Massa Corporal
2.
Artigo em Inglês | MEDLINE | ID: mdl-38690615

RESUMO

Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis. Knockdown of UBE2C inhibits C2C12 cell differentiation and decreases the expressions of MyoG and MyHC, while overexpression of UBE2C promotes C2C12 cell differentiation. Additionally, knockdown of UBE2C, specifically in the tibialis anterior muscle (TA), severely impedes muscle regeneration in vivo. Mechanistically, we show that UBE2C knockdown reduces the level of phosphorylated protein kinase B (p-Akt) and promotes the degradation of Akt. These findings suggest that UBE2C plays a critical role in myoblast differentiation and muscle regeneration and that UBE2C regulates myogenesis through the Akt signaling pathway.

3.
BMC Biol ; 21(1): 19, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726129

RESUMO

BACKGROUND: Skeletal muscle development is a multistep process whose understanding is central in a broad range of fields and applications, from the potential medical value to human society, to its economic value associated with improvement of agricultural animals. Skeletal muscle initiates in the somites, with muscle precursor cells generated in the dermomyotome and dermomyotome-derived myotome before muscle differentiation ensues, a developmentally regulated process that is well characterized in model organisms. However, the regulation of skeletal muscle ontogeny during embryonic development remains poorly defined in farm animals, for instance in pig. Here, we profiled gene expression and chromatin accessibility in developing pig somites and myotomes at single-cell resolution. RESULTS: We identified myogenic cells and other cell types and constructed a differentiation trajectory of pig skeletal muscle ontogeny. Along this trajectory, the dynamic changes in gene expression and chromatin accessibility coincided with the activities of distinct cell type-specific transcription factors. Some novel genes upregulated along the differentiation trajectory showed higher expression levels in muscular dystrophy mice than that in healthy mice, suggesting their involvement in myogenesis. Integrative analysis of chromatin accessibility, gene expression data, and in vitro experiments identified EGR1 and RHOB as critical regulators of pig embryonic myogenesis. CONCLUSIONS: Collectively, our results enhance our understanding of the molecular and cellular dynamics in pig embryonic myogenesis and offer a high-quality resource for the further study of pig skeletal muscle development and human muscle disease.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Análise de Célula Única , Suínos
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 250-261, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36825441

RESUMO

E3 ubiquitin ligases are closely related to cell division, differentiation, and survival in all eukaryotes and play crucial regulatory roles in multiple biological processes and diseases. While Deltex2, as a member of the DELTEX family ubiquitin ligases, is characterized by a RING domain followed by a C-terminal domain (DTC), its functions and underlying mechanisms in myogenesis have not been fully elucidated. Here, we report that Deltex2, which is highly expressed in muscles, positively regulates myoblast proliferation via mediating the expression of Pax7. Meanwhile, we find that Deltex2 is translocated from the nucleus into the cytoplasm during myogenic differentiation, and further disclose that Deltex2 inhibits myoblast differentiation and interacts with MyoD, resulting in the ubiquitination and degradation of MyoD. Altogether, our findings reveal the physiological function of Deltex2 in orchestrating myogenesis and delineate the novel role of Deltex2 as a negative regulator of MyoD protein stability.


Assuntos
Fenômenos Biológicos , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Diferenciação Celular , Ubiquitina/metabolismo , Mioblastos/metabolismo , Proliferação de Células
5.
Acta Pharmacol Sin ; 43(6): 1360-1371, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34480113

RESUMO

Spinal cord injury (SCI) is one kind of severe trauma for central nervous system. Myelin debris clearance and axon regeneration are essential for nerve regeneration after SCI. Metformin, a glucose-lowering drug, has been demonstrated to promote the locomotor functional recovery after SCI. In this study, we investigated the role and molecular mechanism of metformin on myelin preservation in a rat SCI model. SCI was induced in rats by compression at T9 level using a vascular clip. We showed that administration of metformin (50 mg·kg-1·d-1, ip) for 28 days significantly improved locomotor function in SCI rats. Metformin also ameliorated SCI-induced neuronal apoptosis and promoted axon regeneration in the spinal cord. Using co-immunofluorescence of IBa-1 and MBP, and luxol fasting blue (LFB) staining, we demonstrated that metformin promoted the transformation of M1 to M2 phenotype polarization of microglial cells, then greatly facilitated myelin debris clearance and protected the myelin in SCI rats. Furthermore, metformin ameliorated SCI-induced blockade of autophagic flux in the spinal cord, and enhanced the fusion of autophagosome and lysosome by inhibiting the AMPK-mTOR signaling pathway. Moreover, metformin significantly attenuated inflammatory responses in the spinal cord. In LPS-treated BV2 cells, pretreatment with metformin (2 mM) significantly enhanced autophagy level, suppressed inflammation and cell apoptosis. The protective effects were blocked in the presence of an autophagy inhibitor 3-methyladenine (3-MA, 5 mM), suggesting that the effect of metformin on autophagy in microglial cells is essential for the myelin preservation during nerve recovery. This study reveals a novel therapeutic effect of metformin in SCI recovery by regulating the activation of microglial cells and enhancing its autophagy level.


Assuntos
Metformina , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Microglia , Bainha de Mielina/metabolismo , Regeneração Nervosa , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico
6.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1122-1132, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35866607

RESUMO

Delving into porcine embryonic myogenesis is the key to elucidate the complex regulation of breed-specific differences in growth performance and meat production. Increasing evidence proves that pigs with less meat production show earlier embryonic myogenesis, but little is known about the underlying mechanisms. In this study, we examine the longissimus dorsi muscle (LDM) by immunohistochemistry and confirm that the differentiation of myogenic progenitors is increased ( P<0.05) in Lantang (LT, fatty) pigs compared with that in Landrace (LR, lean) pigs, which results in more ( P<0.001) differentiated myoblasts (Pax7 -/MyoD +) and less ( P<0.001) myogenic progenitors (Pax7 +/MyoD -) in LT pigs at 35 days post-conception (35dpc). Additionally, embryonic myogenic progenitors isolated from LT pigs show greater ( P<0.001) differentiation capacity with earlier expression of MyoD compared with those from LR pigs. Moreover, Notch signaling is more active ( P<0.05) in LR pig myogenic progenitors than in LT pig myogenic progenitors. Inhibition of Notch signaling in LR myogenic progenitors suppresses Pax7 expression and increases MyoD expression, thus promoting myogenic differentiation. Consistently, the process of myogenic progenitors differentiating into myoblasts in ex vivo embryo limbs is accelerated when Notch signaling is inhibited. These results indicate that Notch signaling facilitates the maintenance of myogenic progenitors and antagonizes myogenic differentiation by promoting Pax7 expression and preventing MyoD expression in LR pigs.


Assuntos
Desenvolvimento Muscular , Mioblastos , Animais , Diferenciação Celular , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Transdução de Sinais , Suínos
7.
J Cell Mol Med ; 25(10): 4776-4785, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788387

RESUMO

As a serious metabolic disease, diabetes causes series of complications that seriously endanger human health. The liver is a key organ for metabolizing glucose and lipids, which substantially contributes to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Exogenous fibroblast growth factor 1 (FGF1) has a great potential for the treatment of diabetes. Receptor of advanced glycation end products (RAGE) is a receptor for advanced glycation end products that involved in the development of diabetes-triggered complications. Previous study has demonstrated that FGF1 significantly ameliorates diabetes-mediated liver damage (DMLD). However, whether RAGE is involved in this process is still unknown. In this study, we intraperitoneally injected db/db mice with 0.5 mg/kg FGF1. We confirmed that FGF1 treatment not only significantly ameliorates diabetes-induced elevated apoptosis in the liver, but also attenuates diabetes-induced inflammation, then contributes to ameliorate liver dysfunction. Moreover, we found that diabetes triggers the elevated RAGE in hepatocytes, and FGF1 treatment blocks it, suggesting that RAGE may be a key target during FGF1 treatment of diabetes-induced liver injury. Thus, we further confirmed the role of RAGE in FGF1 treatment of AML12 cells under high glucose condition. We found that D-ribose, a RAGE agonist, reverses the protective role of FGF1 in AML12 cells. These findings suggest that FGF1 ameliorates diabetes-induced hepatocyte apoptosis and elevated inflammation via suppressing RAGE pathway. These results suggest that RAGE may be a potential therapeutic target for the treatment of DMLD.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Fator 1 de Crescimento de Fibroblastos/farmacologia , Inflamação/tratamento farmacológico , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Complicações do Diabetes/etiologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
FASEB J ; 34(9): 12367-12378, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686868

RESUMO

HMGB2, a DNA-binding protein, highly expresses during embryogenesis and plays an important role in development of some organs and tissues. However, it remains to be further investigated weather HMGB2 influences muscle development. In this work, we identified HMGB2 as an essential factor in myogenesis. Compared to wild type (WT) mice, body weights of systemic hmgb2 homozygous knockout (hmgb2-/- ) mice especially males were reduced. Diameter and cross-section area of tibialis anterior (TA) muscle fibers as well as expression of Myogenin and MyHC were all decreased in hmgb2-/- mice. CTX injury model revealed that HMGB2 was required for satellite cell proliferation and muscle regeneration. Moreover, HMGB2 interacted with S6K1 and regulated the kinase activity of S6K1 during cell proliferation. Knockdown and inactivation of S6K1 in C2C12 cells both resulted in impaired proliferation and differentiation. Furthermore, expression of cyclin D1 and Myf5 were both decreased when HMGB2 or S6K1 were knocked down and kinase activity of S6K1 was inhibited. These results indicate that HMGB2 is required for skeletal muscle development and regeneration, and HMGB2 maintains proliferation of myoblasts through regulating kinase activity of S6K1.


Assuntos
Proteína HMGB2/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
9.
FASEB J ; 33(8): 9638-9655, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145867

RESUMO

Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desmetilação , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Regiões Promotoras Genéticas/genética , Suínos , Porco Miniatura
10.
BMC Genet ; 20(1): 72, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477002

RESUMO

BACKGROUND: Myogenic Differentiation 1 (MyoD) is a crucial master switch in regulating muscle-specific gene transcription. Forced expression of myoD is equipped to induce several cell lineages into myoblast, which then differentiate and fuse into myotube. Pig is one of the most significant livestock supplying meat, and has been classified into lean, fat and miniature pig breeds. However, the mechanisms underlying muscle mass variation among different pig breeds have remained unclear. Considering the important effect of MyoD on muscle development, it remains to be investigated whether the difference in muscle mass is caused by its single nucleotide polymorphisms (SNPs) which are the major differences among pig breeds at DNA level. RESULTS: In this study, we identified the locations of porcine myoD regulatory regions including proximal regulatory region (PRR), distal regulatory region (DRR), and core enhancer (CE) region. There are 8 SNPs in the regulatory regions and 6 SNPs in gene body region, which were identified from lean, fat and miniature pig populations. However, these SNPs have no effects on its temporal expression and transcriptional activity which might lead to the distinction in postnatal muscle mass. In addition, overexpression of myoD clones across from amphibious to mammals including xenopus tropicalis, chicken, mouse and pig whose gene identities vary from 68 to 84%, could promote myogenesis in NIH3T3 fibroblasts cells. CONCLUSIONS: These results proved that myoD nucleotide variations from different pig populations have no effect on muscle mass, suggesting that the function of myoD is highly conserved not only among different pig breeds, but also across different species. Thus, it would be futile to discover SNPs affecting muscle mass in pig populations with normal muscle development.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Mutação , Sequências Reguladoras de Ácido Nucleico , Suínos
11.
J Cell Physiol ; 233(3): 2537-2548, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28777437

RESUMO

The protein encoded by double sex and mab-3 related transcription factor 1 (Dmrt1) gene contains a double sex/mab-3 domain, which was considered as one of the most conservative structures in sex determination. However, its effect on spermatogenesis of dairy goat spermatogonial stem cells (SSCs) remains to be clarified. For the first time, the roles of Dmrt1 in spermatogenesis of livestock are highlighted. Here, we investigated the expression pattern of Dmrt1 in the testes of dairy goats. Dmrt1 primarily located in undifferentiated SSCs. Moreover, Dmrt1 enhanced differentiation and proliferation of mGSCs. On the contrary, the level of meiosis was down-regulated, as Dmrt1 determines whether SSCs undergo mitosis and spermatogonial differentiation or meiosis. In the busulfan-treated mice testes, Dmrt1 repair germ cell damage was emphasized as well. Our results exposed that Dmrt1 maintenance mGSCs in two ways: facilitating proliferation and self-renewal of SSCs; and reducing the inflammatory response caused by reproductive injury. These findings identify a central role for Dmrt1 in controlling population stability and injury restoring of SSCs.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Indústria de Laticínios , Cabras/metabolismo , Espermatogênese , Fatores de Transcrição/metabolismo , Células-Tronco Germinativas Adultas/efeitos dos fármacos , Células-Tronco Germinativas Adultas/patologia , Animais , Bussulfano/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cabras/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Meiose , Mitose , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Fatores de Transcrição/genética , Transfecção , Tretinoína/farmacologia
12.
Biochem Biophys Res Commun ; 503(2): 970-976, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29932923

RESUMO

MicroRNAs are a class of highly conserved ∼20 nucleotides non-coding RNAs that post-transcriptionally regulate gene expression. Many miRNAs were studied in the development of skeletal muscle, such as miR-1, miR-206, and miR-133. In our previous study, miR-127-3p was found highly expressed in porcine fetal skeletal muscle, whereas the detailed functions of miR-127-3p in muscle development is still unclear. In this study, we detected that miR-127-3p also highly expressed in skeletal muscle, cardiac muscle of adult mice and proliferative C2C12 cell lines. Overexpression of miR-127-3p almost has no effects on differentiation of C2C12 cell lines. However, miR-127-3p significantly inhibited the cell proliferation of C2C12 cells. Moreover, we identified KMT5a as a target gene that was down-regulated in both mRNA and protein level when miR-127-3p mimics were introduced. Furthermore, KMT5a overexpression in miR-127-3p treated cells rescued the influence of miR-127-3p on C2C12 proliferation. In brief, our data reveals that miR-127-3p regulates the proliferation of myocytes through KMT5a.


Assuntos
Proliferação de Células , Regulação para Baixo , Histona-Lisina N-Metiltransferase/genética , MicroRNAs/genética , Células Musculares/citologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Células Musculares/metabolismo , Regulação para Cima
13.
J Phys Ther Sci ; 26(7): 1133-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25140112

RESUMO

[Purpose] The aim of the present study was to seek evidence for the effectiveness of Tai Chi for patients with knee osteoarthritis (KOA). [Subjects and Methods] Systematic searches were conducted of the China Journals Full-text Database, Pubmed, Medline, Science Direct-Online Journals and CINAHL for studies published between 2000 and 2012. Studies were evaluated based on following inclusion criteria: 1) design: randomized control, clinical trial; 2) subjects: patients with a knee osteoarthritis diagnosis; 3) intervention: exercise involving Tai Chi; 4) studies published in English or Chinese. [Results] Six randomized control studies involving Tai Chi and knee osteoarthritis were found. [Conclusion] Tai Chi was an effective way of relieving pain and improving physical function. Further randomized controlled trials with large sample sizes and long training period are needed to compare groups who perform Tai Chi training with other groups who undergo other forms of physical exercise in order to confirm the efficacy of Tai Chi.

14.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598771

RESUMO

Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAPCD9-) having adipogenic potential, as demonstrated by in vitro assays using cells originated from mouse muscle. On the other hand, Yorkshire had more fibro-inflammatory progenitors (FIPs, marked with FAPCD9+), presenting higher expression of the FBN1-Integrin α5ß1. FBN1-Integrin α5ß1 could inhibit insulin signaling in FAPCD9-, suppressing adipogenic differentiation. Our results demonstrated that fat-type pigs possess a greater number of FAPCD9-, which are the exclusive cells in muscle capable of differentiating into adipocytes. Moreover, lean-type pigs exhibit higher expression of FBN1-Integrin α5ß1 axis, which inhibits adipocyte differentiation. These results appropriately explain the observed higher IMF content in fat-type pigs.

15.
Cell Death Dis ; 14(9): 612, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723138

RESUMO

Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell proliferation, apoptosis, and differentiation. Our previous study showed that KLF4 expression is upregulated in skeletal muscle ontogeny during embryonic development in pigs, suggesting its importance for skeletal muscle development and muscle function. We revealed here that KLF4 plays a critical role in skeletal muscle development and regeneration. Specific knockout of KLF4 in skeletal muscle impaired muscle formation further affecting physical activity and also defected skeletal muscle regeneration. In vitro, KLF4 was highly expressed in proliferating myoblasts and early differentiated cells. KLF4 knockdown promoted myoblast proliferation and inhibited myoblast fusion, while its overexpression showed opposite results. Mechanically, in proliferating myoblasts, KLF4 inhibits myoblast proliferation through regulating cell cycle arrest protein P57 by directly targeting its promoter; while in differentiated myoblasts, KLF4 promotes myoblast fusion by transcriptionally activating Myomixer. Our study provides mechanistic information for skeletal muscle development, reduced muscle strength and impaired regeneration after injury and unveiling the mechanism of KLF4 in myogenic regulation.


Assuntos
Fator 4 Semelhante a Kruppel , Desenvolvimento Muscular , Feminino , Gravidez , Animais , Suínos , Desenvolvimento Muscular/genética , Diferenciação Celular/genética , Apoptose , Proteínas de Ciclo Celular , Músculo Esquelético
16.
J Anim Sci Biotechnol ; 14(1): 141, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919760

RESUMO

BACKGROUND: Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness. This favorable mutation is common in Western commercial pig populations, but absent in most Chinese indigenous pig breeds. To improve meat production of Chinese indigenous pigs, we used cytosine base editor 3 (CBE3) to introduce IGF2-intron3-C3071T mutation into porcine embryonic fibroblasts (PEFs) isolated from a male Liang Guang Small Spotted pig (LGSS), and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer (SCNT) to generate the founder line of IGF2T/T pigs. RESULTS: We found the heterozygous progeny IGF2C/T pigs exhibited enhanced expression of IGF2, increased lean meat by 18%-36%, enlarged loin muscle area by 3%-17%, improved intramuscular fat (IMF) content by 18%-39%, marbling score by 0.75-1, meat color score by 0.53-1.25, and reduced backfat thickness by 5%-16%. The enhanced accumulation of intramuscular fat in IGF2C/T pigs was identified to be regulated by the PI3K-AKT/AMPK pathway, which activated SREBP1 to promote adipogenesis. CONCLUSIONS: We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality, and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3K-AKT/AMPK signaling pathways. Our study provides a further understanding of the biological functions of IGF2 and an example for improving porcine economic traits through precise base editing.

17.
Int J Biol Sci ; 19(8): 2475-2494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215981

RESUMO

Spinal cord injury (SCI) is a devastating neurological disorder that often results in loss of motor and sensory function. Diabetes facilitates the blood-spinal cord barrier (BSCB) destruction and aggravates SCI recovery. However, the molecular mechanism underlying it is still unclear. Our study has focused on transient receptor potential melastatin 2 (TRPM2) channel and investigated its regulatory role on integrity and function of BSCB in diabetes combined with SCI rat. We have confirmed that diabetes is obviously not conductive to SCI recovery through accelerates BSCB destruction. Endothelial cells (ECs) are the important component of BSCB. It was observed that diabetes significantly worsens mitochondrial dysfunction and triggers excessive apoptosis of ECs in spinal cord from SCI rat. Moreover, diabetes impeded neovascularization in spinal cord from SCI rat with decreases of VEGF and ANG1. TRPM2 acts as a cellular sensor of ROS. Our mechanistic studies showed that diabetes significantly induces elevated ROS level to activate TRPM2 ion channel of ECs. Then, TRPM2 channel mediated the Ca2+ influx and subsequently activated p-CaMKII/eNOS pathway, and which in turn triggered the ROS production. Consequently, over-activation of TRPM2 ion channel results in excessive apoptosis and weaker angiogenesis during SCI recovery. Inhibition of TRPM2 with 2-Aminoethyl diphenylborinate (2-APB) or TRPM2 siRNA will ameliorate the apoptosis of ECs and promote angiogenesis, subsequently enhance BSCB integrity and improve the locomotor function recovery of diabetes combined with SCI rat. In conclusion, TRPM2 channel may be a key target for the treatment of diabetes combined with SCI rat.


Assuntos
Diabetes Mellitus , Traumatismos da Medula Espinal , Canais de Cátion TRPM , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Diabetes Mellitus/metabolismo , Barreira Hematoencefálica/metabolismo
18.
Animals (Basel) ; 12(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203128

RESUMO

Elucidation of the complex regulation of porcine muscle development is key to increasing pork output and improving pork quality. However, the molecular mechanisms involved in early porcine embryonic muscle development in different pig breeds remain largely unknown. Here, GC-MS based metabolomics and metabolomic profiling was used to examine the longissimus lumborum (LL) of the Lantang (LT) and the Landrace (LR) pig at embryonic day 35 (E35). Metabolites showed clear separation between LT and LR, with 40 metabolites having higher abundances in LT and 14 metabolites having lower abundances in LT compared with LR. In addition, these metabolic changes were mainly associated with nucleotide metabolism and energy metabolism, such as purine metabolism, pyrimidine metabolism, the pentose phosphate pathway, and the TCA cycle. More interestingly, the contents of DNA, RNA, and ATP per unit mass of LL tissues were higher in LT, indicating rapid synthesis of nucleic acids and ATP, to meet both the material and energy requirements of rapid cell proliferation and differentiation. Furthermore, enzyme activity associated with the TCA cycle and pentose phosphate pathway, including α-ketoglutaric dehydrogenase (KGDH), malate dehydrogenase (MDH), pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and glucose-6-phosphate dehydrogenase (G6PDH), were higher in LT. Based on these results, we conclude that there are significant differences in nucleotide metabolism and energy metabolism of LL between LT and LR, and we speculate that the enhanced nucleic acid metabolism and energy metabolism in LT can meet the material and energy requirements of rapid cell proliferation and differentiation, making myogenesis more intense in LT compared to LR which might be the metabolic mechanism underlying the distinct skeletal muscle development in the two breeds.

19.
Int J Biol Sci ; 18(1): 441-458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975343

RESUMO

Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.


Assuntos
Aquaporina 4/efeitos dos fármacos , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Minociclina/farmacologia , Animais , Antibacterianos/farmacologia , Apoptose , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica
20.
Cell Death Dis ; 12(6): 514, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011940

RESUMO

Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.


Assuntos
Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Desenvolvimento Muscular/fisiologia , Fatores de Regulação Miogênica/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA