Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 193(1): 502-518, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37249047

RESUMO

Grain size is important for yield in rice (Oryza sativa L.). Although many genes involved in grain size have been isolated, few can be used in breeding due to their interactions and phenotypic effects. Here, we describe natural variation in the granule-type quantitative trait locus GRAIN SIZE AND WEIGHT 3 (GSW3) located on chromosome 3 in wild rice (Oryza rufipogon Griff.) that encodes a GTPase-regulated protein and negatively regulates grain length, grain width, and 1,000-grain weight. The insertion of a 232-bp fragment of the genomic sequence in the wild rice, a natural allelic variant gene (GSW3), increased the expression levels and reduced the grain length and width and 1,000-grain weight. Knockout of GSW3 in the wild rice inbred line Huaye 3 increased the grain length and width and 1,000-grain weight. Introducing GSW3Huaye3 into cultivated rice line KJ01 and overexpressing GSW3Huaye3 in Huaye 3 resulted in reduced grain length and width and 1,000-grain weight, and grain size and 1,000-grain weight changes were closely related to GSW3 expression levels. GSW3 regulated the grain length and width simultaneously by promoting grain glume cell division and longitudinal and transverse cell growth. GSW3 was also involved in regulating the gibberellic acid signaling pathway and negatively regulated plant growth. Furthermore, a critical SNP in the GSW3 coding region was obviously correlated with grain size variation in a core collection of cultivated rice. This SNP resulted in an amino acid substitution from Gln to Arg at position 161 in GSW3, which reduced the grain size. Our study shows that GSW3 negatively regulates the grain shape, which could explain different grain shapes in modern cultivars and wild rice. GSW3 may also be used for breeding rice varieties with improved grain shapes and higher yield.


Assuntos
Oryza , Oryza/genética , Genes de Plantas , Variação Genética , Fenótipo , Melhoramento Vegetal , Grão Comestível/genética
2.
Phytopathology ; 113(3): 484-496, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36173285

RESUMO

Sugarcane smut is a serious disease caused by Sporisorium scitamineum, which causes significant losses to the sugar industry. It is critical to reveal the molecular pathogenic mechanism of S. scitamineum to explore a new control strategy for sugarcane smut. On the basis of transcriptome sequencing data of two S. scitamineum strains with different pathogenicity, we identified the gene, SsCI51640, which was predicted to encode kynurenine 3-monooxygenase. In this study, we obtained knockout mutants and complementary mutants of this gene and identified gene function. The results showed that the sporidial growth rate and acid production ability of knockout mutants were significantly higher and stronger than those of the wild-type and complementary mutants. The growth of knockout mutants under abiotic stress (osmotic stress and cell wall stress) was significantly inhibited. In addition, the sexual mating ability and pathogenicity of knockout mutants were significantly reduced, while this phenomenon could be restored by adding exogenous cyclic adenosine monophosphate (cAMP). It is thus speculated that the SsCI51640 gene may regulate sexual mating and pathogenicity of S. scitamineum by the cAMP signaling pathway. Moreover, the SsCI51640 gene enhanced the sporidial environmental adaptability, which promoted sexual mating and development of pathogenicity. This study provides a theoretical basis for the molecular pathogenesis of S. scitamineum.


Assuntos
Basidiomycota , Saccharum , Ustilaginales , Quinurenina 3-Mono-Oxigenase/metabolismo , Doenças das Plantas , Ustilaginales/genética , Saccharum/genética
3.
Plant Dis ; 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269592

RESUMO

Sugarcane (Saccharum spp. hybrids) is an economically important crop widely cultivated in the south of China, such as Guangxi, Yunnan, and Guangdong for use as the main raw material of the sugar and alcohol industry (Li and Yang et al. 2015). In July 2021, the sugarcane cultivar GT94-119 planted in Guangzhou (113° 22' E, 23° 09' N), Guangdong province, China showed red to brown ring lesions on the older leaves (Fig.1A). Multiple disease spots gradually merged, eventually leading to leaf wilting and necrosis was observed. Symptoms were present on 11% and 18% of plants in the two observation areas, respectively; however, since symptoms were primarily noted on older leaves, the yield effect was limited. Symptomatic leaf pieces (0.5 × 0.5 cm) were collected and surface-sterilized for 10s in 75% ethanol, followed by 10% NaClO for 30s, washed 3 times with distilled sterile water, blotted dry with sterile tissue, and plated on potato dextrose agar (PDA). The dishes were placed in an incubator at 28 ℃ for 72 h, and the resulting mycelia were transferred to new PDA to obtain pure cultures. The fungal colonies were brownish green, with concentric rings and radial edges (Fig.1B). The hyphae were transparent, separated, and apical hypertrophy (Fig.1C). Conidia were produced within 14 days, ranging in size from 20.0 to 25.5 × 2.5 to 4.5 µm (n=50), upright or curved spindle shaped, clustered or isolated at the end of the conidia stem, with a diaphragm (Fig.1D and E). Eleven isolates purified on PDA were obtained. Morphological identification showed that six of the 11 isolates were similar in morphology and preliminarily identified as Curvularia ischaemi (Mckenzie et al., 1981). One of the above six isolates, named GZ01, was selected for molecular identification. Following the CTAB method for extracting total DNA, the internal transcribed spacer (ITS) region and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) region were amplified and sequenced by using ITS4/ITS5 primer (White et al. 1990) and GDF/GDR primer (Damm et al. 2012), respectively. The amplified sequence was compared to nucleotide sequence reported in GenBank using BLAST search, with 98.49% similarity to Curvularia ischaemi strain CBS 630.82 (GenBank MH861533.1) and 99.81% similarity to the GAPDH sequence of Curvularia ischaemi (GenBank LT715790.1). The phylogenetic tree based on sequence data for the two genes mentioned above and other reference sequences indicated that our isolate (GZ01) was closely identified as Curvularia ischaemi (Fig.2). To obtain a spore suspension of GZ01 for pathogenicity test, spores were cultured (28℃) in PDA for 14 days, washed with sterilized distilled water, and filtered with cheese cloth. The pathogenicity test was carried out in a greenhouse at 28℃ using a spore suspension (1×104 mL-1) and distilled water as inoculation sources. Healthy seedlings of the susceptible sugarcane cultivar LC05-136 were inoculated at the 5 to 6 leaf stage. The spore suspension was evenly sprayed on nine seedlings until the leaves were fully wet, additional nine seedlings were evenly sprayed with the same volume of sterile water to serve as the control. At 14 days after inoculation, all inoculated plants with suspension showed the same symptoms as observed in the greenhouse (Fig.1F), while all plants inoculated with sterile water showed no symptoms. Curvularia ischaemi was again isolated from the infected leaves with symptoms. The results confirm Koch's postulates. Curvularia ischaemi has been previously reported to cause disease on Batiki blusgrass (Ischaemum indicum) (Mckenzie et al. 1981). To our knowledge, this is the first report of C. ischaemi causing ring spot disease on sugarcane in China. For different ecological types of sugarcane areas, whether this disease will occur in the early stage of sugarcane growth and have an impact on sugarcane yield is worth further investigation.

4.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628726

RESUMO

Sugarcane is an important sugar crop and energy crop worldwide. Sugarcane smut caused by Sporisorium scitamineum is a serious fungal disease that occurs worldwide, seriously affecting the yield and quality of sugarcane. It is essential to reveal the molecular pathogenesis of S. scitamineum to explore a new control strategy of sugarcane smut. Based on transcriptome sequencing data of two S. scitamineum strains Ss16 and Ss47, each with a different pathogenicity, our laboratory screened out the SsCI80130 gene predicted to encode squalene monooxygenase. In this study, we obtained the knockout mutants (ΔSs80130+ and ΔSs80130-) and complementary mutants (COM80130+ and COM80130-) of this gene by the polyethylene glycol-mediated (PEG-mediated) protoplast transformation technology, and then performed a functional analysis of the gene. The results showed that the deletion of the SsCI80130 gene resulted in the increased content of squalene (substrate for squalene monooxygenase) and decreased content of ergosterol (the final product of the ergosterol synthesis pathway) in S. scitamineum. Meanwhile, the sporidial growth rate of the knockout mutants was significantly slower than that of the wild type and complementary mutants; under cell-wall stress or oxidative stress, the growth of the knockout mutants was significantly inhibited. In addition, the sexual mating ability and pathogenicity of knockout mutants were significantly weakened, while the sexual mating ability could be restored by adding exogenous small-molecular signal substance cAMP (cyclic adenosine monophosphate) or tryptophol. It is speculated that the SsCI80130 gene was involved in the ergosterol biosynthesis in S. scitamineum and played an important role in the sporidial growth, stress response to different abiotic stresses (including cell wall stress and oxidative stress), sexual mating/filamentation and pathogenicity. Moreover, the SsCI80130 gene may affect the sexual mating and pathogenicity of S. scitamineum by regulating the ergosterol synthesis and the synthesis of the small-molecular signal substance cAMP or tryptophol required for sexual mating. This study reveals for the first time that the gene encoding squalene monooxygenase is involved in regulating the sexual mating and pathogenicity of S. scitamineum, providing a basis for the molecular pathogenic mechanism of S. scitamineum.

5.
Front Microbiol ; 12: 746550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675909

RESUMO

Sugarcane is an important sugar crop. Sugarcane smut, caused by Sporisorium scitamineum, is a worldwide sugarcane disease with serious economic losses and lack of effective control measures. Revealing the molecular pathogenesis of S. scitamineum is very helpful to the development of effective prevention and control technology. Deubiquitinase removes ubiquitin molecules from their binding substrates and participates in a variety of physiological activities in eukaryotes. Based on the transcriptome sequencing data of two isolates (Ss16 and Ss47) of S. scitamineum with different pathogenicities, SsCI33130, a gene encoding an OTU1-deubiquitin enzyme, was identified. The positive knockout mutants and complementary mutants of the SsCI33130 gene were successfully obtained through polyethylene glycol-mediated protoplast transformation technology. In order to study the possible function of this gene in pathogenicity, phenotypic comparison of the growth, morphology, abiotic stress, sexual mating, pathogenicity, and gene expression levels of the knockout mutants, complementary mutants, and their wild type strains were conducted. The results demonstrated that the gene had almost no effect on abiotic stress, cell wall integrity, growth, and morphology, but was related to the sexual mating and pathogenicity of S. scitamineum. The sexual mating ability and pathogenicity between the knockout mutants or between the knockout mutant and wild type were more significantly reduced than between the wild types, the complementary mutants, or the wild types and complementary mutants. The sexual mating between the knockout mutants or between the knockout mutant and wild type could be restored by the exogenous addition of small-molecule signaling substances such as 5 mM cyclic adenosine monophosphate (cAMP) or 0.02 mM tryptophol. In addition, during sexual mating, the expression levels of tryptophol and cAMP synthesis-related genes in the knockout mutant combinations were significantly lower than those in the wild type combinations, while the expression levels in the complementary mutant combinations were restored to the level of the wild type. It is speculated that the SsCI33130 gene may be involved in the development of sexual mating and pathogenicity in S. scitamineum by regulating the synthesis of the small-molecule signaling substances (cAMP or tryptophol) required during the sexual mating of S. scitamineum, thereby providing a molecular basis for the study of the pathogenic mechanisms of S. scitamineum.

6.
Front Microbiol ; 12: 696117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002988

RESUMO

Sugarcane smut is a significant sugarcane disease caused by Sporisorium scitamineum and is a large threat to the sugar industry in China and the world. Accordingly, it is important to study the pathogenic mechanism by which this disease occurs to identify effective prevention and control strategies. Gene SsCI72380, which encodes cytochrome P450 sterol 14 alpha-demethylase (CYP51), was screened out from the transcriptome of S. scitamineum. In this study, the functions of gene SsCI72380 were identified via the knockout mutants ΔSs72380+ and ΔSs72380- , which were obtained by polyethylene glycol (PEG)-mediated protoplast transformation technology, as well as the complementary mutants COM72380+ and COM72380- . The results showed that the CYP51 gene SsCI72380 played an important role in sporidial growth, sexual mating/filamentation, hyphae growth, and pathogenicity in S. scitamineum. Gene SsCI72380 may regulate the biosynthesis process of ergosterol by encoding CYP51 enzymes and then affecting the structure and function of the cell membrane. Gene SsCI72380 also played an important role in the response toward different abiotic stresses, including hyperosmotic stress, oxidative stress, and cell wall stress, by regulating the permeability of the cell membrane. In addition, gene SsCI72380 is a new type of pathogenic gene from S. scitamineum that enhances the pathogenicity of S. scitamineum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA