Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Sci Technol ; 58(13): 5844-5855, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506747

RESUMO

Lake sediments play a critical role in organic carbon (OC) conservation. However, the biogeochemical processes of the C cycle in lake ecosystems remain limitedly understood. In this study, Fe fractions and OC fractions, including total OC (TOC) and OC associated with iron oxides (TOCFeO), were measured for sediments from a eutrophic lake in China. The abundance and composition of bacterial communities encoding genes cbbL and cbbM were obtained by using high-throughput sequencing. We found that autochthonous algae with a low C/N ratio together with δ13C values predominantly contributed to the OC burial in sediments rather than terrigenous input. TOCFeO served as an important C sink deposited in the sediments. A significantly positive correlation (r = 0.92, p < 0.001) suggested the remarkable regulation of complexed FeO (Fep) on fixed TOC fractions, and the Fe redox shift triggered the loss of deposited OC. It should be noted that a significant correlation was not found between the absolute abundance of C-associating genera and TOC, as well as TOCFeO, and overlying water. Some rare genera, including Acidovora and Thiobacillus, served as keystone species and had a higher connected degree than the genera with high absolute abundance. These investigations synthetically concluded that the absolute abundance of functional genes did not dominate CO2 fixation into the sediments via photosynthesis catalyzed by the C-associating RuBisCO enzyme. That is, rare genera, together with high-abundance genera, control the C association and fixation in the sediments.


Assuntos
Ecossistema , Sedimentos Geológicos , Sedimentos Geológicos/química , Ciclo do Carbono , Lagos/química , Lagos/microbiologia , Bactérias/genética , China , Carbono
2.
Environ Res ; 238(Pt 2): 117247, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769833

RESUMO

Freshwater lakes undergo substantial alterations of the phosphorus (P) cycle in the water-sediment ecosystem due to thermal change. The impact process of seasonal fluctuation on P cycling in sediments has been scarcely investigated. P forms in sediments from a freshwater lake in China were analyzed using sequential extraction technique. The vertical distribution of soluble reactive P (SRP), Fe2+, and S2- in the interstitial water was measured using diffusion gradient technique (DGT). Fick's Law and DIFS model were used to obtain the diffusion fluxes of SRP and the kinetic parameters in the water-sediment system. The results showed that total P (TP) concentrations in the solid sediments varied from 207.5, 266.6 and 130.3 mg/kg to 614.7, 1053.1, and 687.6 mg/kg in winter, spring, and summer, respectively. The concentrations of individual P forms in spring were higher than those in other seasons, with Fe-bound P (Fe-P) concentration being the highest across all seasons. Notably, significant variations of SRP concentrations were found in the interstitial water between sedimentary depths of approximately 2 cm and 6 cm, particularly in the summer. Furthermore, higher diffusion fluxes of SRP through the interface were found in summer. A stable anaerobic environment failed to develop in spring with high water level, preventing the desorption of solid Fe-P and diffusion of Fe2+ into the water due to the afflux and deposition of P-containing particulate into deeper sediment layers along with organic material. Under extreme high-temperature in summer, decreased rainfall and rising temperatures boosted the activity of aquatic organisms in the water, thereby reducing P fixation by sediments and leading to P release. This process increased the risk of P excess and potential eutrophication in the water. Generally, clarifying the resupplying processes of endogenous P in sediment systems experiencing seasonal variations is critical for eutrophication management of lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Estações do Ano , Água , Fósforo/análise , Ecossistema , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Eutrofização , China
3.
J Environ Manage ; 341: 118050, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141713

RESUMO

Nitrogen (N) reduction processes including denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are critical for the eutrophication in the lake water. However, the understanding about the dominant pathways of N cycling keep limited due to the high complexity of N cycle processes in lacustrine environment. The N fractions in sediments collected from Shijiuhu Lake were measured using high-resolution (HR)-Peeper technique and chemical extraction method in varied seasons. The abundance and microbial community compositions of functional genes involved in various N-cycling processes were also obtained using high-throughput sequencing. The results showed that NH4+ concentrations in the pore water remarkably increased from the upper layer toward the deeper layer and from winter to spring. This trend suggested that higher temperature facilitated the accumulation of NH4+ in the water. Decreased NO3- concentrations were also detected at deeper sediment layers and higher temperature, indicating the intensification of N reduction on anaerobic conditions. The NH4+-N concentrations reduced in spring along with the slight change of NO3--N in solid sediment, indicating the desorption and release of mobile NH4+ from solid phase to the solution. Remarkably decreased absolute abundances of functional genes were found in spring with DNRA bacteria nrfA gene as dominant genus and Anaeromyxobacter as the most dominant bacterium (21.67 ± 1.03%). Higher absolute abundance (146.2-788.1 × 105 Copies/g) of nrfA gene relative to other genes was mainly responsible for the increase of bio-available NH4+ in the sediments. Generally, microbial DNRA pathway predominated the N reduction and retention processes in the lake sediment at higher temperature and water depth even experiencing the suppression of DNRA bacteria abundance. These results suggested the existence of ecological risk via N retention by the action of the DNRA bacteria in the sediment on the condition of higher temperature, further provided valuable information for N management of eutrophic lakes.


Assuntos
Compostos de Amônio , Nitratos , Poluentes Químicos da Água , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Lagos/química , Nitratos/análise , Nitrogênio , Compostos Orgânicos , Oxirredução , Estações do Ano , Água
4.
J Environ Manage ; 340: 118016, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121007

RESUMO

Identifying phosphorus (P) sources and contributions from terrestrial sources is important for clean water and eutrophication management in lake watersheds. However, this remains challenging owing to the high complexity of P transport processes. The concentrations of different P fractions in the soils and sediments from Taihu Lake, a representative freshwater lake watershed, were obtained using sequential extraction procedure. The dissolved phosphate (PO4-P) and alkaline phosphatase activity (APA) in the lake's water were also surveyed. The results showed that different P pools in the soil and sediments displayed different ranges. Higher concentrations of P fractions were measured in the solid soils and sediments from the northern and western regions of the lake watershed, indicating a larger input of P from exogenous sources, including agriculture runoff and industrial effluent from the river. Generally, higher Fe-P and Ca-P concentrations of up to 399.5 and 481.4 mg/kg were detected in soils and lake sediments, respectively. Similarly, the lake's water had higher concentrations of PO4-P and APA in the northern region. A significant positive correlation was found between Fe-P in the soil and PO4-P concentrations in the water. Statistical analysis indicated that appropriately 68.75% P was retained in the sediment from terrigenous sources, and 31.25% P experienced dissolution and shifted to the solution phase in the water-sediment ecosystems. The dissolution and release in Fe-P in the soils were responsible for the increase of Ca-P in the sediment after the afflux of soils into the lake. These findings suggest that soil runoff predominantly controls P occurrence in lake sediments as an exogenous source. Generally, the strategy of reducing terrestrial inputs from agricultural soil discharge is still an important step in P management at the catchment scale of lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Fósforo/análise , Ecossistema , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Solo , Água/análise , China , Poluentes Químicos da Água/análise , Eutrofização
5.
J Environ Sci (China) ; 118: 147-157, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305764

RESUMO

Different N and P fractions in microcosm incubation experiment was measured using high-resolution in-situ Peeper and DGT techniques combining with sequential extraction procedure. The results showed the synchronous desorption and release of PO43-, S2- and Fe2+ from the solid soil-originated sediment. This trend indicated that the significant reduction of Fe-P and SO42- occurred in the pore water during the inundation. The concentrations of PO43- in the overlying water and pore water increased to more than 0.1 and 0.2 mg/L at the beginning of the incubation experiment. Decreased NO3-concentrations from more than 1.5 mg/L to less than 0.5 mg/L combining with increasing NH4+ concentrations from less than 1 mg/L to more than 5 mg/L suggested the remarkable NO3- reduction via dissimilatory nitrate reduction to ammonia (DNRA) pathway over time. High NH4+ concentrations in the pore water aggravated the release of Fe2+ through reduction of Fe(III)-P as electric acceptors under anaerobic conditions. This process further stimulated the remarkable releasing of labile PO43- from the solid phase to the solution and potential diffusion into overlying water. Additionally, high S2- concentration at deeper layer indicated the reduction and releasing of S2- from oxidation states, which can stimulated the NO3- reduction and the accumulation of NH4+ in the pore water. This process can also provoke the reduction of Fe-P as electric acceptors following the release of labile PO43- into pore water. Generally, inundation potentially facilitate the desorption of labile P and attention should be paid during the reclaiming lake from polder.


Assuntos
Fósforo , Poluentes Químicos da Água , Sedimentos Geológicos , Ferro/análise , Lagos , Nitrogênio , Solo , Poluentes Químicos da Água/análise
6.
J Environ Sci (China) ; 109: 181-192, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607667

RESUMO

Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems, but the lack of test methods hinders the understanding of removal mechanism and application. In this study, we used the novel technologies combined of Diffusive gradients in thin films (DGT), Planar optode (PO), and Non-invasive micro-test technology (NMT) to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time. Results of the high-resolution in situ measurement showed that labile P(LPDGT) fluxes at the surficial sediment significantly decreased from approximate 120, 140, and 200 pg/ (cm2•sec) via 30 days incubation period to 17, 40, and 56 pg/(cm2•sec) via that of 15 days. Obvious synchronous increase of LPDGT was not detected in overlying water, suggesting the intense assimilation of dissolve reactive P via root over time. PO measurement indicated that O2 concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100% saturation along with the root stretch downwards. NMT detection of roots showed the obvious O2 inflow into root tissue with the uppermost flux of 30 pmol/(cm2•sec) from surroundings via aerenchyma on different treatment conditions. Different from previous reports, gradually saturating O2 concentrations around the rhizosphere was principally driven by O2 penetration through interspace attributing to root stretch downward rather than root O2 leakage. Increased O2 concentrations in deep sediment over time finally induced the oxidization of labile Fe(II) into Fe(III) bound P and local P immobilization.


Assuntos
Potamogetonaceae , Poluentes Químicos da Água , Ecossistema , Compostos Férricos , Sedimentos Geológicos , Fósforo , Rizosfera , Poluentes Químicos da Água/análise
7.
Environ Int ; 187: 108729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735077

RESUMO

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Assuntos
Antibacterianos , Bacillus subtilis , Escherichia coli , Estresse Oxidativo , Antibacterianos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia , Meropeném/farmacologia
8.
Environ Int ; 187: 108704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692150

RESUMO

With the rapid growth of aquaculture globally, large amounts of antibiotics have been used to treat aquatic disease, which may accelerate induction and spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquaculture environments. Herein, metagenomic and 16S rRNA analyses were used to analyze the potentials and co-occurrence patterns of pathogenome (culturable and unculturable pathogens), antibiotic resistome (ARGs), and mobilome (mobile genetic elements (MGEs)) from mariculture waters near 5000 km coast of South China. Total 207 species of pathogens were identified, with only 10 culturable species. Furthermore, more pathogen species were detected in mariculture waters than those in coastal waters, and mariculture waters were prone to become reservoirs of unculturable pathogens. In addition, 913 subtypes of 21 ARG types were also identified, with multidrug resistance genes as the majority. MGEs including plasmids, integrons, transposons, and insertion sequences were abundantly present in mariculture waters. The co-occurrence network pattern between pathogenome, antibiotic resistome, and mobilome suggested that most of pathogens may be potential multidrug resistant hosts, possibly due to high frequency of horizontal gene transfer. These findings increase our understanding of mariculture waters as reservoirs of antibiotic resistome and mobilome, and as yet another hotbed for creation and transfer of new antibiotic-resistant pathogenome.


Assuntos
Antibacterianos , Aquicultura , Bactérias , RNA Ribossômico 16S , Bactérias/genética , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , China , Microbiologia da Água , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal , Resistência Microbiana a Medicamentos/genética , Metagenômica
9.
Water Res ; 259: 121837, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810347

RESUMO

The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.


Assuntos
Antibacterianos , Escherichia coli , Ozônio , Ozônio/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos/genética , Bactérias/efeitos dos fármacos
10.
Water Res ; 260: 121980, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909425

RESUMO

Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure. The APAase activity (APA) were obtained accompanying with enzymatic dynamical parameters Vmax and Km. The abundances and diversity of gene phoD-harboring bacterial communities were assessed using high throughput sequencing. The analysis results showed the decrease of potentially bioavailable P fractions including MgCl2-P and Fe-P along sampling gradient southwards together with active P concentrations in the water. Conversely, increasing APA and absolute abundance of phoD gene were found with the decreasing of P loads southwards. Positive correlation (p < 0.05) between absolute abundance and APA indicated that phoD-encoding bacteria manipulated the APA and Po mineralization. Negative correlation (p < 0.01) suggested that the APA was restrained by high P load and was promoted under low P condition. However, higher Vmax and Km values suggested that high mineralization potential of Po maintained the high concentrations of potentially bioavailable P even the APA was restricted. The abundance increase of predominant genus Cobetia (from 15.51 to 24.34 %) mirrored by the reduced Calothrix abundance (from 24.65 to 1036 %) was speculated to be responsible for the APA promotion under low P condition. Higher diversity indices in the high P scenario suggested that high P load stimulated the ecological diversity of gene phoD-encoding bacteria community. Generally, rare taxa such as Burkholderia having high connected degrees in bacterial communities together with abundant genera synergistically manipulated the phoD gene abundance and APase generation. Interaction between P fractions and bacteria encoding phoD gene determined the eutrophication status in the lacustrine ecosystem.

11.
Water Res ; 240: 120107, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244018

RESUMO

Excessive phosphorus (P) enrichment is the critical cause of eutrophication in the lake water. Organic P (Po) mineralization processes induced by alkaline phosphatase (APase) regulated by phoD-encoding microorganisms in the lake ecosystems was still ambiguous due to the transseasonal shift of water temperatures and depths. Different P pools in the water and sediments of Shijiuhu Lake at varied seasons were measured using chemical extraction methods and solution 31P NMR. The alkaline phosphatase activity (APA) in the sediments were assessed together with enzyme kinetic parameters. The abundances and compositions of microbial communities encoding functional gene phoD were also obtained using high-throughput sequencing. The results showed that Po concentrations remarkably increased from winter toward spring when having higher water depths due to the terrigenous input and biomass deposition. Noteworthy elevation in the PO43- concentration was observed in the interstitial water during the spring, particularly at around 5 cm sediment depth with value reaching as high as 0.43 mg/L. The degradation and mineralization of momoesters and diesters with higher concentrations in the sediments of spring aggravated the PO43- load in the interstitial water. Higher APA reaching 91.6 µg/(g·h) in spring was responsible for the mineralization of Po. Remarkably upwards increasing of absolute abundance of phoD-encoding gene in spring reaching up to 2.6 times of that in winter facilitated the generation of APA in spring. Cobetia and Calothrix followed by Aquabacterium and Mitsuaria were the most abundant phoD-encoding genera with relative abundance > 4%. Weakly positive correlation between dominant bacterial genera and APA and P fractions suggested that low-abundance genera was also involved in the APA generation and Po hydrolysis. These results indicate that spring with high water temperature and depth facilitate the mineralization of Po in the sediment and increase of labile PO43- load in the water, further provide valuable information for the management of eutrophic lakes.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/análise , Fosfatase Alcalina , Lagos/química , Ecossistema , Água , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , China , Eutrofização
12.
Environ Pollut ; 320: 121038, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623786

RESUMO

Municipal solid waste (MSW) landfills, constituting the third largest anthropogenic sources of bioaerosols, are suspected to be one of the major contributors to adverse health outcomes. A regional modeling of aerosol trajectories based on wind-tunnel observations and on-site monitoring was newly-developed to uncover the impacts of a typical MSW landfill on ambient bioaerosol pollution. Results showed that the horizontal diffusion velocity of bioaerosols reached 4.33 times higher than the vertical velocity under surface calm winds. On-site monitoring revealed that the concentrations of particulate matter (PM) with a diameter of 10 µm were 3.05 times higher than those of PM1.0 in the 2.8-km downwind residential regions near the MSW landfill. With the increase in PM concentration, higher-abundance microorganisms were detected. A number of cultivable bacterial species (Micrococcus endophyticus, Micrococcus flavus, Bacillus sporothermodurans, Salmonella entericaserovar typhi, Rhodococcus hoagie, Blastococcups) and fungal species (Aspergillus niger, Penicillium, Microascus cirrosus, Cochliobolus, Stemphylium vesicarium) were identified in these bioaerosols. Furthermore, distinguished by transmission electron microscopy, a longer-range transported microorganism (E. coli) clinging onto suspended PM was observed, signifying higher exposure risks. Human health risk assessments demonstrate that the residents and occupational workers in the vicinity of MSW landfill endured atmospheric diffusion-induced bioaerosol exposure risks due to open dumping activities in MSW landfill. This study clearly indicates bioaerosol pollution from landfills, and people particularly living nearby the MSW facilities, must decrease outdoor activities during dusty days.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Humanos , Resíduos Sólidos/análise , Escherichia coli , Instalações de Eliminação de Resíduos , Material Particulado , Bactérias , Eliminação de Resíduos/métodos
13.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241293

RESUMO

Heterostructures based on layered materials are considered next-generation photocatalysts due to their unique mechanical, physical, and chemical properties. In this work, we conducted a systematic first-principles study on the structure, stability, and electronic properties of a 2D monolayer WSe2/Cs4AgBiBr8 heterostructure. We found that the heterostructure is not only a type-II heterostructure with a high optical absorption coefficient, but also shows better optoelectronic properties, changing from an indirect bandgap semiconductor (about 1.70 eV) to a direct bandgap semiconductor (about 1.23 eV) by introducing an appropriate Se vacancy. Moreover, we investigated the stability of the heterostructure with Se atomic vacancy in different positions and found that the heterostructure was more stable when the Se vacancy is near the vertical direction of the upper Br atoms from the 2D double perovskite layer. The insightful understanding of WSe2/Cs4AgBiBr8 heterostructure and the defect engineering will offer useful strategies to design superior layered photodetectors.

14.
ISME Commun ; 3(1): 115, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935916

RESUMO

Due to the wide use of antibiotics, intensive aquaculture farms have been recognized as a significant reservoir of antibiotic resistomes. Although the prevalence of colistin resistance genes and multidrug-resistant bacteria (MDRB) has been documented, empirical evidence for the transmission of colistin and multidrug resistance between bacterial communities in aquaculture farms through horizontal gene transfer (HGT) is lacking. Here, we report the prevalence and transmission risk of colistin and multidrug resistance in 27 aquaculture water samples from 9 aquaculture zones from over 5000 km of subtropical coastlines in southern China. The colistin resistance gene mcr-1, mobile genetic element (MGE) intl1 and 13 typical antibiotic resistance genes (ARGs) were prevalent in all the aquaculture water samples. Most types of antibiotic (especially colistin) resistance are transmissible in bacterial communities based on evidence from laboratory conjugation and transformation experiments. Diverse MDRB were detected in most of the aquaculture water samples, and a strain with high-level colistin resistance, named Ralstonia pickettii MCR, was isolated. The risk of horizontal transfer of the colistin resistance of R. pickettii MCR through conjugation and transformation was low, but the colistin resistance could be steadily transmitted to offspring through vertical transfer. The findings have important implications for the future regulation of antibiotic use in aquaculture farms globally to address the growing threat posed by antibiotic resistance to human health.

15.
Water Res ; 245: 120661, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769418

RESUMO

The reduction of exogenous emissions of phosphorus (P) is a crucial measure for resolving eutrophication in lakes. However, the input of terrigenous materials still potentially contributes to an increase of P load in lake systems. In this study, we examined the phosphate oxygen isotope (δ18OP) of various P fractions in soils and sediments in a small lake watershed, namely, Shijiuhu watershed. The high-resolution in-situ diffusive gradients in thin films (DGT) technology was also used to survey the dynamic processes of P diffusion from sediment particles to the water. The results demonstrated that lighter δ18OP values (16.2-19.5‰) for individual P fractions in lake sediments were detected compared to other land-use patterns, indicating the cumulative biological P recycling on anaerobic condition. Fe bound P (Fe-P) overall had heavier δ18OP values (17.3-24.8‰) than some of Ca bound P (Ca-P) and equilibrium values, suggesting that Fe-P conserved the parental isotope signatures from terrigenous source and could act as the ideal tracer for the lake sediments. The mixing effect of terrigenous detrital input and biological mineralization made the source identification uncertain by using Ca-P, which had a wider range of δ18OP values (13.0-26.6‰). Additionally, significantly positive correlation (r = 0.551-0.913, p<0.05) between soluble reactive P (SRP) and Fe2+ in interstitial water obtained using DGT measurement revealed the conspicuous release and desorption of solid Fe-P toward the water. High diffusion fluxes from the sediments toward the overlying water further demonstrated that the desorption of Fe-P in the soil-originated sediments toward the solution conspicuously facilitated the accumulation of SRP in lake water. The first-time application of δ18OP isotope combined with in-situ DGT techniques certified that it's feasible for the contribution confirmation from terrigenous to lacustrine environments, and presented the direct evidence for management strategy making about P control and eutrophication restoration at the catchment scale of lakes.

16.
Water Res ; 221: 118808, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841790

RESUMO

The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in water is increasingly becoming a worldwide problem due to frequent recent major public health events. Herein, the horizontal ARG transfer mechanisms were studied under sub-lethal photocatalysis. The results show that ARGs had at most a 3- to 6-fold increase in the conjugative transfer frequency when only donor bacteria were induced with sub-lethal photocatalysis, while the frequency exhibited a trend toward inhibition when only the recipient bacteria were induced. However, when the donor or recipient bacteria were induced beforehand for a specific time, the frequency increased by a maximum of 10- to 22-fold. Moreover, the horizontal transfer frequency and its mechanism were related to the oxidative stress systems, ATP systems and the expression of related genes. Furthermore, the transformability of extracellular plasmids of the ARB and the contribution in horizontal transfer were also studied. Results show that the transformation frequency accounted for up to 50% of the total number of transconjugants, indicating that transformation might be a primary mode of horizontal ARG transfer by ARB in water. All of the above results demonstrate that sub-lethal photocatalysis will increase the frequency of horizontal gene transfer of ARGs through both conjugative transfer and the transformation pathway, which increases the risk of ARB in aquatic environments.


Assuntos
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal , Água
17.
Water Res ; 218: 118407, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453030

RESUMO

The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO2 system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.


Assuntos
Escherichia coli , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Ácido Fólico/farmacologia , Humanos , RNA/farmacologia , Águas Residuárias/microbiologia
18.
Chemosphere ; 303(Pt 1): 134664, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35460675

RESUMO

Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.


Assuntos
Compostos de Amônio , Amônia , Compostos de Amônio/metabolismo , Desnitrificação , Ecossistema , Compostos Férricos , Sedimentos Geológicos , Lagos , Nitratos/análise , Nitrogênio , Óxidos de Nitrogênio , Compostos Orgânicos , Fósforo , Água/análise
19.
Chemosphere ; 305: 135382, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718038

RESUMO

Phosphorus (P) is normally considered as the limited nutrient for shallow freshwater lakes and can potentially trigger eutrophication on account of high concentrations. Due to the various transportation and transformation processes, P source apportionment and management in lake ecosystems have become more and more difficult. Combining with sequential extraction of P fractions and mineralogical analysis, the isotopic compositions of oxygen in phosphate (δ18OP) of resin-extractable P from the different samples including soil, estuary sediments, pond sediments, and lake sediments in the Shijiuhu Lake catchment, China, were investigated. The results showed that δ18OP values ranged from +15.23 to +21.92‰ in agricultural soil, +16.53 to +24.10‰ in estuary sediments, +18.90 to +20.90‰ in pond sediments, and +17.42 to +19.70‰ in lake sediments. Isotopic signatures indicated that chemical fertilizers with heavier δ18OP values (+20.70 to +26.50‰) were the predominant contributors of P in the soil. The river transportation together with Fe/Al-P desorption on anaerobic condition simultaneously stimulated the enrichment of P in the lake sediments, even though the biotic activity regulated the isotope values moving toward the equilibrium. Eroded soil was the important source of P in lake and pond sediments via drainage and runoff, and conserved the source isotope signal in the samples. Stronger biotic activity in the aquatic environments dragged δ18OP values toward the equilibrium. However, conspicuous off-equilibrium isotope signature suggested the terrestrial sources in the aquatic ecosystems. The calculation of two end-member linear mixing models suggested that soils also predominantly controlled the P occurrence in the lake sediments with contribution higher than 80%, indicating that decreasing inputs from the agricultural activities is important in P reduction on catchment scale. Generally, δ18OP from different sources can provide indirect and important evidences for the identification and management of P sources in the lake catchment.


Assuntos
Lagos , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/química , Isótopos de Oxigênio/análise , Fosfatos/análise , Fósforo/análise , Solo/química , Poluentes Químicos da Água/análise
20.
Front Psychol ; 12: 744371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950084

RESUMO

This study empirically demonstrates significant regional peer effects due to tax avoidance. We used peer companies' idiosyncratic stock returns as an instrumental variable to address potential endogeneity problems. The heterogeneity analysis indicates that for companies with a stronger intensity of regional tax collection and management, a higher degree of informatization, and companies with a low management shareholding ratio, the regional peer effects of enterprise tax avoidance are more significant. Finally, we determined that the managers' information learning, reputation consideration, and information communication are key mechanisms propagating peer effects. The conclusions of this paper enrich and expand the peer effect theory of corporate tax avoidance, thereby providing a theoretical basis and empirical evidence for tax authorities in supervising corporate tax avoidance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA