Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 14(12): 7090-9, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25337657

RESUMO

We demonstrate dual interface formation in nanocrystals (NCs) through cation exchange, creating epitaxial heterostructures within spherical NCs. The thickness of the inner-disk layer can be tuned to form two-dimensional (2D), single atomic layers (<1 nm). During the cation exchange reaction from copper sulfide to zinc sulfide (ZnS), we observe a solid-solid phase transformation of the copper sulfide phase in heterostructured NCs. As the cation exchange reaction is initiated, Cu ions replaced by Zn ions at the interfaces are accommodated in intrinsic Cu vacancy sites present in the initial roxbyite (Cu1.81S) phase of copper sulfide, inducing a full phase transition to djurleite (Cu1.94S)/low chalcocite (Cu2S), a more thermodynamically stable phase than roxbyite. As the reaction proceeds and reduces the size of the copper sulfide layer, the epitaxial strain at the interfaces between copper sulfide and ZnS increases and is maximized for a copper sulfide disk ∼ 5 nm thick. To minimize this strain energy, a second phase transformation occurs back to the roxbyite phase, which shares a similar sulfur sublattice to wurtzite ZnS. The observation of a solid-solid phase transformation in our unique heterostructured NCs provides a new pathway to control desired phases and an insight into the influence of cation exchange on nanoscale phase transitions in heterostructured materials.


Assuntos
Cobre/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanosferas/química , Nanosferas/ultraestrutura , Sulfetos/química , Cátions , Módulo de Elasticidade , Teste de Materiais , Tamanho da Partícula , Transição de Fase , Estresse Mecânico , Resistência à Tração , Compostos de Zinco/química
2.
J Chem Phys ; 141(16): 164125, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362290

RESUMO

Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu(1.81)S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ~8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA