Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Rheumatol ; 40(12): 2363-2372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36541240

RESUMO

OBJECTIVES: B cells play a central role in Sjögren's syndrome (SS) whereby autoreactive B-cells populate ectopic germinal centres (GC) in SS salivary glands (SG) and undergo somatic hypermutation (SHM) and class-switch recombination of the immunoglobulin genes. However, the capacity of specific B cell clones to seed ectopic GC in different SG and undergo clonal diversification is unclear. To unravel the dynamics of B cell recirculation among minor SG biopsies, we investigated the immunoglobulin heavy chain (IgH) gene usage and the pattern of SHM using a high-throughput sequencing approach. METHODS: We generated ~166,000 reads longer than 350bp and detected 1631 clonotypes across eight samples from four different SS patients, all characterised by the presence of functional ectopic GC as demonstrated by the expression of activation-induced cytidine deaminase. RESULTS: A large number of shared clonotypes were observed among paired mSG biopsies from each patient but not across different patients. Lineage tree analysis revealed significant clonal expansion within the mSG with the identification of shared dominant B cell clones suggestive of extensive recirculation across different SG. Several shared clonotypes with high proliferating capacity displayed IgH-VH gene usage common in autoreactive B cells, including VH1-69, which is typical of rheumatoid factor+ B cells representing potential lymphoma precursors. CONCLUSIONS: The complex dynamic recirculation of B cells that we observed within ectopic GC responses linked with their ability to independently proliferate, undergo ongoing SHM and Ig class-switching within individual glands may explain the difficulty in achieving consistent eradication of ectopic GCs following B cell depleting agents reported in different studies.


Assuntos
Síndrome de Sjogren , Humanos , Linfócitos B/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Glândulas Salivares Menores/patologia , Síndrome de Sjogren/patologia
2.
J Clin Invest ; 134(12)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38950333

RESUMO

Ectopic lymphoid structures (ELSs) in the rheumatoid synovial joints sustain autoreactivity against locally expressed autoantigens. We recently identified recombinant monoclonal antibodies (RA-rmAbs) derived from single, locally differentiated rheumatoid arthritis (RA) synovial B cells, which specifically recognize fibroblast-like synoviocytes (FLSs). Here, we aimed to identify the specificity of FLS-derived autoantigens fueling local autoimmunity and the functional role of anti-FLS antibodies in promoting chronic inflammation. A subset of anti-FLS RA-rmAbs reacting with a 60 kDa band from FLS extracts demonstrated specificity for HSP60 and partial cross-reactivity to other stromal autoantigens (i.e., calreticulin/vimentin) but not to citrullinated fibrinogen. Anti-FLS RA-rmAbs, but not anti-neutrophil extracellular traps rmAbs, exhibited pathogenic properties in a mouse model of collagen-induced arthritis. In patients, anti-HSP60 antibodies were preferentially detected in RA versus osteoarthritis (OA) synovial fluid. Synovial HSPD1 and CALR gene expression analyzed using bulk RNA-Seq and GeoMx-DSP closely correlated with the lympho-myeloid RA pathotype, and HSP60 protein expression was predominantly observed around ELS. Moreover, we observed a significant reduction in synovial HSP60 gene expression followed B cell depletion with rituximab that was strongly associated with the treatment response. Overall, we report that synovial stromal-derived autoantigens are targeted by pathogenic autoantibodies and are associated with specific RA pathotypes, with potential value for patient stratification and as predictors of the response to B cell-depleting therapies.


Assuntos
Artrite Reumatoide , Autoantígenos , Chaperonina 60 , Centro Germinativo , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Animais , Humanos , Camundongos , Autoantígenos/imunologia , Autoantígenos/genética , Centro Germinativo/imunologia , Centro Germinativo/patologia , Chaperonina 60/imunologia , Chaperonina 60/genética , Autoanticorpos/imunologia , Autoimunidade , Masculino , Sinoviócitos/imunologia , Sinoviócitos/patologia , Sinoviócitos/metabolismo , Artrite Experimental/imunologia , Artrite Experimental/patologia , Feminino , Linfócitos B/imunologia , Linfócitos B/patologia , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia
3.
Nat Commun ; 15(1): 2398, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493215

RESUMO

The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment.


Assuntos
Artrite Reumatoide , Receptores Proteína Tirosina Quinases , Humanos , Receptor Tirosina Quinase Axl , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Membrana Sinovial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA