Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Biol Sci ; 287(1926): 20200102, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345167

RESUMO

Effectively conserving biodiversity with limited resources requires scientifically informed and efficient strategies. Guidance is particularly needed on how many living plants are necessary to conserve a threshold level of genetic diversity in ex situ collections. We investigated this question for 11 taxa across five genera. In this first study analysing and optimizing ex situ genetic diversity across multiple genera, we found that the percentage of extant genetic diversity currently conserved varies among taxa from 40% to 95%. Most taxa are well below genetic conservation targets. Resampling datasets showed that ideal collection sizes vary widely even within a genus: one taxon typically required at least 50% more individuals than another (though Quercus was an exception). Still, across taxa, the minimum collection size to achieve genetic conservation goals is within one order of magnitude. Current collections are also suboptimal: they could remain the same size yet capture twice the genetic diversity with an improved sampling design. We term this deficiency the 'genetic conservation gap'. Lastly, we show that minimum collection sizes are influenced by collection priorities regarding the genetic diversity target. In summary, current collections are insufficient (not reaching targets) and suboptimal (not efficiently designed), and we show how improvements can be made.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Classificação , Plantas , Tamanho da Amostra
2.
Conserv Biol ; 34(6): 1416-1425, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32233087

RESUMO

Maintaining a living plant collection is the most common method of ex situ conservation for plant species that cannot be seed banked (i.e., exceptional species). Viability of living collections, and their value for future conservation efforts, can be limited without coordinated efforts to track and manage individuals across institutions. Using a pedigree-focused approach, the zoological community has established an inter-institutional infrastructure to support long-term viability of captive animal populations. We assessed the ability of this coordinated metacollection infrastructure to support the conservation of 4 plant species curated in living collections at multiple botanic gardens around the world. Limitations in current practices include the inability to compile, share, and analyze plant collections data at the individual level, as well as difficulty in tracking original provenance of ex situ material. The coordinated metacollection framework used by zoos can be adopted by the botanical community to improve conservation outcomes by minimizing the loss of genetic diversity in collections. We suggest actions to improve ex situ conservation of exceptional plant species, including developing a central database to aggregate data and track unique individuals of priority threatened species among institutions and adapting a pedigree-based population management tool that incorporates life-history aspects unique to plants. If approached collaboratively across regional, national, and global scales, these actions could transform ex situ conservation of threatened plant species.


Aplicación del Modelo Zoológico a la Conservación de Especies Excepcionales de Plantas Amenazadas Resumen El mantenimiento de una colección de plantas vivas es el método más común para de conservación ex situ para especies de plantas que no pueden almacenarse en bancos de semillas (i. e., especies excepcionales). La viabilidad de las colecciones vivientes, junto con el valor que representan para los futuros esfuerzo de conservación, puede estar limitada si no existen esfuerzos coordinados para rastrear y manejar a los individuos entre las instituciones. Mediante una estrategia enfocada en el linaje, la comunidad de zoológicos ha establecido una infraestructura interinstitucional que respalda la viabilidad a largo plazo de las poblaciones de animales en cautiverio. Evaluamos la habilidad de esta infraestructura coordinada de metacolecciones para apoyar en la conservación de cuatro especies de plantas curadas en colecciones vivientes en varios jardines botánicos de todo el mundo. Las limitaciones de las prácticas contemporáneas incluyen la incapacidad de recopilar, compartir y analizar los datos de las colecciones de plantas a nivel individual, así como la dificultad de rastrear la procedencia original del material ex situ. El marco de trabajo de metacolecciones coordinadas que utilizan los zoológicos puede ser adoptado por la comunidad botánica para mejorar los resultados de conservación al minimizar la pérdida de la diversidad genética que ocurre en las colecciones. Sugerimos acciones que aumenten la conservación ex situ de las especies excepcionales de plantas. Estas acciones incluyen el desarrollo de una base de datos central para acumular datos y rastrear entre las instituciones a los individuos únicos de las especies amenazadas prioritarias y la adaptación de una herramienta de manejo poblacional basada en el linaje que incorpore los aspectos únicos de la historia de vida de las plantas. Si estas acciones se plantean colaborativamente a escala regional, nacional y global, podrían transformar la conservación ex situ de las especies amenazadas de plantas.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Jardinagem , Plantas/genética , Sementes
3.
J Hered ; 111(1): 21-32, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31723957

RESUMO

The Hawai'ian honeycreepers (drepanids) are a classic example of adaptive radiation: they adapted to a variety of novel dietary niches, evolving a wide range of bill morphologies. Here we investigated genomic diversity, demographic history, and genes involved in bill morphology phenotypes in 2 honeycreepers: the 'akiapola'au (Hemignathus wilsoni) and the Hawai'i 'amakihi (Chlorodrepanis virens). The 'akiapola'au is an endangered island endemic, filling the "woodpecker" niche by using a unique bill morphology, while the Hawai'i 'amakihi is a dietary generalist common on the islands of Hawai'i and Maui. We de novo sequenced the 'akiapola'au genome and compared it to the previously sequenced 'amakihi genome. The 'akiapola'au is far less heterozygous and has a smaller effective population size than the 'amakihi, which matches expectations due to its smaller census population and restricted ecological niche. Our investigation revealed genomic islands of divergence, which may be involved in the honeycreeper radiation. Within these islands of divergence, we identified candidate genes (including DLK1, FOXB1, KIF6, MAML3, PHF20, RBP1, and TIMM17A) that may play a role in honeycreeper adaptations. The gene DLK1, previously shown to influence Darwin's finch bill size, may be related to honeycreeper bill morphology evolution, while the functions of the other candidates remain unknown.


Assuntos
Adaptação Biológica , Especiação Genética , Passeriformes/genética , Animais , Ecossistema , Evolução Molecular , Feminino , Variação Genética , Genoma , Masculino , Anotação de Sequência Molecular , Passeriformes/anatomia & histologia
4.
Mol Ecol ; 28(3): 568-583, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298567

RESUMO

Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i 'amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High-elevation, unexposed populations of 'amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low-elevation 'amakihi, we genotyped 125 'amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference 'amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low- and high-elevation population pairs and identified loci with signatures of selection within low-elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta-defensin, glycoproteins and interleukin-related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.


Assuntos
Evolução Molecular , Genética Populacional , Malária Aviária/genética , Passeriformes/genética , Passeriformes/parasitologia , Adaptação Biológica/genética , Altitude , Animais , Resistência à Doença/genética , Aptidão Genética , Genótipo , Havaí , Polimorfismo de Nucleotídeo Único , Seleção Genética
5.
BMC Genomics ; 15: 1098, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25496081

RESUMO

BACKGROUND: The Hawaiian honeycreepers are an avian adaptive radiation containing many endangered and extinct species. They display a dramatic range of phenotypic variation and are a model system for studies of evolution, conservation, disease dynamics and population genetics. Development of a genome-scale resources for this group would augment the quality of research focusing on Hawaiian honeycreepers and facilitate comparative avian genomic research. RESULTS: We assembled the genome sequence of a Hawaii amakihi (Hemignathus virens),and identified ~3.9 million single nucleotide polymorphisms (SNPs) in the genome. Using the amakihi genome as a reference, we also identified ~156,000 SNPs in RAD tag (restriction site associated DNA) sequencing of five honeycreeper species (palila [Loxioides bailleui], Nihoa finch [Telespiza ultima], iiwi [Vestiaria coccinea], apapane [Himatione sanguinea], and amakihi). SNPs are distributed throughout the amakihi genome, and the individual sequenced shows several large regions of low heterozygosity on chromosomes 1, 5, 6, 8 and 11. SNPs from RAD tag sequencing were also found throughout the genome but were found to be more densely located on microchromosomes, apparently a result of differential distribution of the particular site recognized by restriction enzyme BseXI. CONCLUSIONS: The amakihi genome sequence will be useful for comparative avian genomics research and provides a significant resource for studies in such areas as disease ecology, evolution, and conservation genetics. The genome sequences will enable mapping of transcriptome data for honeycreepers and comparison of gene sequences between avian taxa. Researchers will be able to use the large number of SNP markers to genotype honeycreepers in regions of interest or across the whole genome. There are enough markers to enable use of methods such as genome-wide association studies (GWAS) that will allow researchers to make connections between phenotypic diversity of honeycreepers and specific genetic variants. Genome-wide markers will also help resolve phylogenetic and population genetic questions in honeycreepers.


Assuntos
Espécies em Perigo de Extinção , Genômica , Passeriformes/genética , Animais , Evolução Molecular , Feminino , Marcadores Genéticos/genética , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
6.
Sci Rep ; 13(1): 5675, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029156

RESUMO

Ebola virus is highly lethal for great apes. Estimated mortality rates up to 98% have reduced the global gorilla population by approximately one-third. As mountain gorillas (Gorilla beringei beringei) are endangered, with just over 1000 individuals remaining in the world, an outbreak could decimate the population. Simulation modeling was used to evaluate the potential impact of an Ebola virus outbreak on the mountain gorilla population of the Virunga Massif. Findings indicate that estimated contact rates among gorilla groups are high enough to allow rapid spread of Ebola, with less than 20% of the population projected to survive at 100 days post-infection of just one gorilla. Despite increasing survival with vaccination, no modeled vaccination strategy prevented widespread infection. However, the model projected that survival rates greater than 50% could be achieved by vaccinating at least half the habituated gorillas within 3 weeks of the first infectious individual.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Hominidae , Humanos , Animais , Gorilla gorilla , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/veterinária , Surtos de Doenças/veterinária
8.
Mol Ecol Resour ; 16(5): 1173-88, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220248

RESUMO

Here, we present a set of RNA-based probes for whole mitochondrial genome in-solution enrichment, targeting a diversity of mammalian mitogenomes. This probes set was designed from seven mammalian orders and tested to determine the utility for enriching degraded DNA. We generated 63 mitogenomes representing five orders and 22 genera of mammals that yielded varying coverage ranging from 0 to >5400X. Based on a threshold of 70% mitogenome recovery and at least 10× average coverage, 32 individuals or 51% of samples were considered successful. The estimated sequence divergence of samples from the probe sequences used to construct the array ranged up to nearly 20%. Sample type was more predictive of mitogenome recovery than sample age. The proportion of reads from each individual in multiplexed enrichments was highly skewed, with each pool having one sample that yielded a majority of the reads. Recovery across each mitochondrial gene varied with most samples exhibiting regions with gaps or ambiguous sites. We estimated the ability of the probes to capture mitogenomes from a diversity of mammalian taxa not included here by performing a clustering analysis of published sequences for 100 taxa representing most mammalian orders. Our study demonstrates that a general array can be cost and time effective when there is a need to screen a modest number of individuals from a variety of taxa. We also address the practical concerns for using such a tool, with regard to pooling samples, generating high quality mitogenomes and detail a pipeline to remove chimeric molecules.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Mamíferos/genética , Hibridização de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos/genética , Animais , Análise por Conglomerados , DNA Mitocondrial/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA