Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(3): 579-92, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083869

RESUMO

The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protein nestin in an Sp1/3 transcription-factor-dependent manner and that Nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Nestina/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Prognóstico , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
3.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
4.
Gut ; 73(3): 496-508, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-37758326

RESUMO

OBJECTIVE: Cytotoxic agents are the cornerstone of treatment for patients with advanced intrahepatic cholangiocarcinoma (iCCA), despite heterogeneous benefit. We hypothesised that the pretreatment molecular profiles of diagnostic biopsies can predict patient benefit from chemotherapy and define molecular bases of innate chemoresistance. DESIGN: We identified a cohort of advanced iCCA patients with comparable baseline characteristics who diverged as extreme outliers on chemotherapy (survival <6 m in rapid progressors, RP; survival >23 m in long survivors, LS). Diagnostic biopsies were characterised by digital pathology, then subjected to whole-transcriptome profiling of bulk and geospatially macrodissected tissue regions. Spatial transcriptomics of tumour-infiltrating myeloid cells was performed using targeted digital spatial profiling (GeoMx). Transcriptome signatures were evaluated in multiple cohorts of resected cancers. Signatures were also characterised using in vitro cell lines, in vivo mouse models and single cell RNA-sequencing data. RESULTS: Pretreatment transcriptome profiles differentiated patients who would become RPs or LSs on chemotherapy. Biologically, this signature originated from altered tumour-myeloid dynamics, implicating tumour-induced immune tolerogenicity with poor response to chemotherapy. The central role of the liver microenviroment was confrmed by the association of the RPLS transcriptome signature with clinical outcome in iCCA but not extrahepatic CCA, and in liver metastasis from colorectal cancer, but not in the matched primary bowel tumours. CONCLUSIONS: The RPLS signature could be a novel metric of chemotherapy outcome in iCCA. Further development and validation of this transcriptomic signature is warranted to develop precision chemotherapy strategies in these settings.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo
5.
Hepatology ; 78(6): 1742-1754, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789652

RESUMO

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy, with increasing incidence worldwide and limited therapeutic options. Aberrant protein glycosylation is a hallmark of cancer. Here, we thoroughly investigated the possible involvement of fucosylation in cholangiocarcinogenesis. APPROACH AND RESULTS: We discovered that the levels of global fucosylation and members of the fucosylation pathway are ubiquitously upregulated in human iCCA tissues compared to nontumorous surrounding livers and normal biliary cells. In addition, total fucosylation levels correlate with poor patients' prognosis. Furthermore, fucosylation inhibition following 6-alkynylfucose (6AF) administration triggered a dose-dependent decrease in the proliferation and migration of iCCA cell lines. Notably, adding fucose to the cell medium annulled these effects. At the molecular level, 6AF administration or small interfering RNA-mediated silencing of GDP-L-fucose synthetase (FX) and the GDP-fucose transmembrane transporter (SLC35C1), both pivotal players of cellular fucosylation, decreased NOTCH activity, NOTCH1/Jagged1 interaction, NOTCH receptors, and related target genes in iCCA cell lines. In the same cells, EGFR, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and Bcl-xL protein levels diminished, whereas IκBα (a critical cellular NF-κB inhibitor) increased after FX/SLC35C1 knockdown or 6AF administration. In the chick chorioallantoic membrane assay, 6AF treatment profoundly suppresses the growth of iCCA cells. CONCLUSIONS: Elevated global fucosylation characterizes human iCCA, contributing to cell growth and migration through the upregulation of the NOTCH and EGFR/NF-κB pathways. Thus, aberrant fucosylation is a novel pathogenetic player and a potential therapeutic target for human iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , NF-kappa B/metabolismo , Glicosilação , Prognóstico , Fucose/metabolismo , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Receptores ErbB/metabolismo
6.
Hepatology ; 77(6): 1929-1942, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921500

RESUMO

BACKGROUND AND AIMS: Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS: The requirement of YAP/TAZ in c-Met/ß-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/ß-Catenin HCCs. YAP is the major Hippo effector in c-Met/ß-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS: Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/genética , Carcinogênese/genética , Mutação , Via de Sinalização Wnt/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Axina/genética
7.
Br J Cancer ; 128(6): 1134-1147, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572733

RESUMO

BACKGROUND: Recently, molecular tumour boards (MTBs) have been integrated into the clinical routine. Since their benefit remains debated, we assessed MTB outcomes in the Comprehensive Cancer Center Ostbayern (CCCO) from 2019 to 2021. METHODS AND RESULTS: In total, 251 patients were included. Targeted sequencing was performed with PCR MSI-evaluation and immunohistochemistry for PD-L1, Her2, and mismatch repair enzymes. 125 treatment recommendations were given (49.8%). High-recommendation rates were achieved for intrahepatic cholangiocarcinoma (20/30, 66.7%) and gastric adenocarcinoma (10/16, 62.5%) as opposed to colorectal cancer (9/36, 25.0%) and pancreatic cancer (3/18, 16.7%). MTB therapies were administered in 47 (18.7%) patients, while 53 (21.1%) received alternative treatment regimens. Thus 37.6% of recommended MTB therapies were implemented (47/125 recommendations). The clinical benefit rate (complete + partial + mixed response + stable disease) was 50.0% for MTB and 63.8% for alternative treatments. PFS2/1 ratios were 34.6% and 16.1%, respectively. Significantly improved PFS could be achieved for m1A-tier-evidence-based MTB therapies (median 6.30 months) compared to alternative treatments (median 2.83 months; P = 0.0278). CONCLUSION: The CCCO MTB yielded a considerable recommendation rate, particularly in cholangiocarcinoma patients. The discrepancy between the low-recommendation rates in colorectal and pancreatic cancer suggests the necessity of a weighted prioritisation of entities. High-tier recommendations should be implemented predominantly.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Pancreáticas , Humanos , Ductos Biliares Intra-Hepáticos , Neoplasias Pancreáticas
8.
Gastroenterology ; 163(2): 481-494, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35489428

RESUMO

BACKGROUND & AIMS: YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/ß-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and ß-Catenin cascades in iCCA. METHODS: Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, ß-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine ß-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or ß-Catenin. Immunostaining of total and nonphosphorylated/activated ß-Catenin staining was performed in mouse and human iCCAs. RESULTS: We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, ß-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by ß-Catenin. Importantly, activated/nonphosphorylated ß-Catenin was detected in more than 80% of human iCCAs. CONCLUSION: YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with ß-Catenin. ß-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and ß-Catenin pathways in cholangiocarcinogenesis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Sinalização YAP , beta Catenina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
Hepatology ; 76(4): 951-966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35076948

RESUMO

BACKGROUND AND AIMS: Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS: The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS: This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ácido Graxo Sintase Tipo I , Neoplasias Hepáticas , Anilidas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mamíferos/metabolismo , Camundongos , Monoéster Fosfórico Hidrolases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridinas , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR , Tensinas
10.
Hepatology ; 76(6): 1617-1633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35030285

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS: The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS: Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Humanos , Proteoma , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Lipídeos/uso terapêutico , Proliferação de Células
11.
BMC Cancer ; 23(1): 1086, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946160

RESUMO

BACKGROUND: Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. METHODS: NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. RESULTS: HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. CONCLUSIONS: Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/patologia
12.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768380

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Prognóstico , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
13.
Gut ; 71(8): 1613-1628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34509979

RESUMO

OBJECTIVE: Large-scale genome sequencing efforts of human tumours identified epigenetic modifiers as one of the most frequently mutated gene class in human cancer. However, how these mutations drive tumour development and tumour progression are largely unknown. Here, we investigated the function of the histone demethylase KDM6A in gastrointestinal cancers, such as liver cancer and pancreatic cancer. DESIGN: Genetic alterations as well as expression analyses of KDM6A were performed in patients with liver cancer. Genetic mouse models of liver and pancreatic cancer coupled with Kdm6a-deficiency were investigated, transcriptomic and epigenetic profiling was performed, and in vivo and in vitro drug treatments were conducted. RESULTS: KDM6A expression was lost in 30% of patients with liver cancer. Kdm6a deletion significantly accelerated tumour development in murine liver and pancreatic cancer models. Kdm6a-deficient tumours showed hyperactivation of mTORC1 signalling, whereas endogenous Kdm6a re-expression by inducible RNA-interference in established Kdm6a-deficient tumours diminished mTORC1 activity resulting in attenuated tumour progression. Genome-wide transcriptional and epigenetic profiling revealed direct binding of Kdm6a to crucial negative regulators of mTORC1, such as Deptor, and subsequent transcriptional activation by epigenetic remodelling. Moreover, in vitro and in vivo genetic epistasis experiments illustrated a crucial function of Deptor and mTORC1 in Kdm6a-dependent tumour suppression. Importantly, KDM6A expression in human tumours correlates with mTORC1 activity and KDM6A-deficient tumours exhibit increased sensitivity to mTORC1 inhibition. CONCLUSION: KDM6A is an important tumour suppressor in gastrointestinal cancers and acts as an epigenetic toggle for mTORC1 signalling. Patients with KDM6A-deficient tumours could benefit of targeted therapy focusing on mTORC1 inhibition.


Assuntos
Histona Desmetilases/metabolismo , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Epigênese Genética , Histona Desmetilases/genética , Histonas/genética , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
14.
Semin Liver Dis ; 42(1): 77-86, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34311471

RESUMO

Metabolic rewiring is one of the hallmarks of cancer. Altered de novo lipogenesis is one of the pivotal metabolic events deregulated in cancers. Sterol regulatory element-binding transcription factor 1 (SREBP1) controls the transcription of major enzymes involved in de novo lipogenesis, including ACLY, ACACA, FASN, and SCD. Studies have shown the increased de novo lipogenesis in human hepatocellular carcinoma (HCC) samples. Multiple mechanisms, such as activation of the AKT/mechanistic target of rapamycin (mTOR) pathway, lead to high SREBP1 induction and the coordinated enhanced expression of ACLY, ACACA, FASN, and SCD genes. Subsequent functional analyses have unraveled these enzymes' critical role(s) and the related de novo lipogenesis in hepatocarcinogenesis. Importantly, targeting these molecules might be a promising strategy for HCC treatment. This paper comprehensively summarizes de novo lipogenesis rewiring in HCC and how this pathway might be therapeutically targeted.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Lipogênese/genética , Neoplasias Hepáticas/patologia
15.
J Hepatol ; 76(1): 123-134, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464659

RESUMO

BACKGROUND & AIMS: Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development. METHODS: The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice. An hepatocyte-specific inducible TTR-CreERT2 KO system was applied to evaluate the role of YAP and TAZ during tumor progression. Expression patterns of YAP, TAZ, c-MYC, and BCL2L12 were analyzed in human HCC samples. RESULTS: We found that the Hippo cascade is inactivated in c-Myc-induced mouse HCC. Intriguingly, TAZ mRNA levels and activation status correlated with c-MYC activity in human and mouse HCC, but YAP mRNA levels did not. We demonstrated that TAZ is a direct transcriptional target of c-MYC. In c-Myc induced murine HCCs, ablation of Taz, but not Yap, completely prevented tumor development. Mechanistically, TAZ was required to avoid c-Myc-induced hepatocyte apoptosis during tumor initiation. The anti-apoptotic BCL2L12 gene was identified as a novel target regulated specifically by YAP/TAZ, whose silencing strongly suppressed c-Myc-driven murine hepatocarcinogenesis. In c-Myc murine HCC lesions, conditional knockout of Taz, but not Yap, led to tumor regression, supporting the requirement of TAZ for c-Myc-driven HCC progression. CONCLUSIONS: TAZ is a pivotal player at the crossroad between the c-MYC and Hippo pathways in HCC. Targeting TAZ might be beneficial for the treatment of patients with HCC and c-MYC activation. LAY SUMMARY: The identification of novel treatment targets and approaches for patients with hepatocellular carcinoma is crucial to improve survival outcomes. We identified TAZ as a transcriptional target of c-MYC which plays a critical role in c-MYC-dependent hepatocarcinogenesis. TAZ could potentially be targeted for the treatment of patients with c-MYC-driven hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/efeitos adversos , Proteínas de Sinalização YAP/efeitos adversos , Animais , Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/efeitos adversos , Proteínas de Ligação a DNA/análise , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Knockout , Estatísticas não Paramétricas , Fatores de Transcrição/efeitos adversos , Fatores de Transcrição/análise , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas de Sinalização YAP/genética
16.
J Hepatol ; 77(1): 177-190, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35217064

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) comprises a heterogeneous group of malignant tumors associated with dismal prognosis. Alterations in post-translational modifications (PTMs), including NEDDylation, result in abnormal protein dynamics, cell disturbances and disease. Herein, we investigate the role of NEDDylation in CCA development and progression. METHODS: Levels and functions of NEDDylation, together with response to pevonedistat (NEDDylation inhibitor) or CRISPR/Cas9 against NAE1 were evaluated in vitro, in vivo and/or in patients with CCA. The development of preneoplastic lesions in Nae1+/- mice was investigated using an oncogene-driven CCA model. The impact of NEDDylation in CCA cells on tumor-stroma crosstalk was assessed using CCA-derived cancer-associated fibroblasts (CAFs). Proteomic analyses were carried out by mass-spectrometry. RESULTS: The NEDDylation machinery was found overexpressed and overactivated in human CCA cells and tumors. Most NEDDylated proteins found upregulated in CCA cells, after NEDD8-immunoprecipitation and further proteomics, participate in the cell cycle, proliferation or survival. Genetic (CRISPR/Cas9-NAE1) and pharmacological (pevonedistat) inhibition of NEDDylation reduced CCA cell proliferation and impeded colony formation in vitro. NEDDylation depletion (pevonedistat or Nae1+/- mice) halted tumorigenesis in subcutaneous, orthotopic, and oncogene-driven models of CCA in vivo. Moreover, pevonedistat potentiated chemotherapy-induced cell death in CCA cells in vitro. Mechanistically, impaired NEDDylation triggered the accumulation of both cullin RING ligase and NEDD8 substrates, inducing DNA damage and cell cycle arrest. Furthermore, impaired NEDDylation in CCA cells reduced the secretion of proteins involved in fibroblast activation, angiogenesis, and oncogenic pathways, ultimately hampering CAF proliferation and migration. CONCLUSION: Aberrant protein NEDDylation contributes to cholangiocarcinogenesis by promoting cell survival and proliferation. Moreover, NEDDylation impacts the CCA-stroma crosstalk. Inhibition of NEDDylation with pevonedistat may represent a potential therapeutic strategy for patients with CCA. LAY SUMMARY: Little is known about the role of post-translational modifications of proteins in cholangiocarcinoma development and progression. Herein, we show that protein NEDDylation is upregulated and hyperactivated in cholangiocarcinoma, promoting tumor growth. Pharmacological inhibition of NEDDylation halts cholangiocarcinogenesis and could be an effective therapeutic strategy to tackle these tumors.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Neoplasias dos Ductos Biliares/etiologia , Ductos Biliares Intra-Hepáticos , Linhagem Celular Tumoral , Colangiocarcinoma/etiologia , Humanos , Camundongos , Modelos Teóricos , Proteômica , Transdução de Sinais
17.
Am J Pathol ; 191(5): 930-946, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545120

RESUMO

Hepatocellular carcinoma (HCC) and hepatoblastoma are the major types of primary liver cancer in adulthood and childhood, respectively. Wnt/ß-catenin signaling deregulation is one of the most frequent genetic events in hepatocarcinogenesis. APC regulator of WNT signaling pathway (APC) encodes an inhibitor of the Wnt cascade and acts as a tumor suppressor. Germline defects of the APC gene lead to familial adenomatous polyposis, and its somatic mutations occur in multiple tumor types. However, the contribution of APC in hepatocarcinogenesis remains unclear. Therefore, APC mutations and expression patterns were examined in human HCC and hepatoblastoma samples. Whether loss of Apc alone or in cooperation with other oncogenes triggers liver tumor development in vivo was also investigated. sgApc alone could not drive liver tumor formation, but synergized with activated oncogenes (YapS127A, TazS89A, and c-Met) to induce hepatocarcinogenesis. Mechanistically, Apc deletion induced the activation of ß-catenin and its downstream targets in mouse liver tumors. Furthermore, Ctnnb1 ablation or TCF4-mediated transcription blockade completely prevented liver tumor formation, indicating the requirement of a functional ß-catenin pathway for loss of Apc-driven hepatocarcinogenesis. This study shows that a subset of HCC patients with loss-of-function APC mutations might benefit from therapeutic strategies targeting the Wnt/ß-catenin pathway.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/genética , Carcinoma Hepatocelular/genética , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Via de Sinalização Wnt/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes
18.
Am J Pathol ; 191(9): 1651-1667, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129844

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignant neoplasm with limited therapeutic options. Previous studies have found that Notch1 overexpression alone suffices to induce iCCA in the mouse, albeit after long latency. The current study found that activation of the Yes-associated protein (Yap) proto-oncogene occurs during Notch1-driven iCCA progression. After co-expressing activated Notch1 intracellular domain (Nicd) and Yap (YapS127A) in the mouse liver, rapid iCCA formation and progression occurred in Nicd/Yap mice. Mechanistically, an increased expression of amino acid transporters and activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway was detected in Nicd/Yap mouse liver tumors. Significantly, the genetic deletion of Raptor, the major mTORC1 component, completely suppressed iCCA development in Nicd/Yap mice. Elevated expression of Notch1, YAP, amino acid transporters, and members of the mTORC1 pathway was also detected ubiquitously in a collection of human iCCA specimens. Their levels were associated with a poor patient outcome. This study demonstrates that Notch and YAP concomitant activation is frequent in human cholangiocarcinogenesis. Notch and YAP synergize to promote iCCA formation by activating the mTORC1 pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Animais , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proto-Oncogene Mas , Proteínas de Sinalização YAP
19.
Hepatology ; 73 Suppl 1: 49-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32394479

RESUMO

Primary liver cancers, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), are highly lethal tumors, with high worldwide frequency and few effective treatment options. The mammalian target of rapamycin (mTOR) complex is a central regulator of cell growth and metabolism that integrates inputs from amino acids, nutrients, and extracellular signals. The mTOR protein is incorporated into two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Specifically, mTORC1 regulates protein synthesis, glucose and lipid metabolism, and autophagy, whereas mTORC2 promotes liver tumorigenesis through modulating the adenine/cytosine/guanine family of serine/threonine kinases, especially the protein kinase B proteins. In human HCC and iCCA samples, genomics analyses have revealed the frequent deregulation of the mTOR complexes. Both in vitro and in vivo studies have demonstrated the key role of mTORC1 and mTORC2 in liver-tumor development and progression. The first-generation mTOR inhibitors have been evaluated for effectiveness in liver-tumor treatment and have provided unsatisfactory results. Current research efforts are devoted to generating more efficacious mTOR inhibitors and identifying biomarkers for patient selection as well as for combination therapies. Here, we provide a comprehensive review of the mechanisms leading to a deregulated mTOR signaling cascade in liver cancers, the mechanisms whereby the mTOR pathway contributes to HCC and iCCA molecular pathogenesis, the therapeutic strategies, and the challenges to effectively inhibit mTOR in liver-cancer treatment. Conclusion: Deregulated mTOR signaling significantly contributes to HCC and iCCA molecular pathogenesis. mTOR inhibitors, presumably administered in association with other drugs, might be effective against subsets of human liver tumors.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Terapia de Alvo Molecular , Serina-Treonina Quinases TOR/fisiologia , Animais , Neoplasias dos Ductos Biliares/etiologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Colangiocarcinoma/etiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Camundongos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
20.
Hepatology ; 74(1): 248-263, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368437

RESUMO

BACKGROUND AND AIMS: Mothers against decapentaplegic homolog (SMAD) 7 is an antagonist of TGF-ß signaling. In the present investigation, we sought to determine the relevance of SMAD7 in liver carcinogenesis using in vitro and in vivo approaches. APPROACH AND RESULTS: We found that SMAD7 is up-regulated in a subset of human HCC samples with poor prognosis. Gene set enrichment analysis revealed that SMAD7 expression correlates with activated yes-associated protein (YAP)/NOTCH pathway and cholangiocellular signature genes in HCCs. These findings were substantiated in human HCC cell lines. In vivo, overexpression of Smad7 alone was unable to initiate HCC development, but it significantly accelerated c-Myc/myeloid cell leukemia 1 (MCL1)-induced mouse HCC formation. Consistent with human HCC data, c-Myc/MCL1/Smad7 liver tumors exhibited an increased cholangiocellular gene expression along with Yap/Notch activation and epithelial-mesenchymal transition (EMT). Intriguingly, blocking of the Notch signaling did not affect c-Myc/MCL1/Smad7-induced hepatocarcinogenesis while preventing cholangiocellular signature expression and EMT, whereas ablation of Yap abolished c-Myc/MCL1/Smad7-driven HCC formation. In mice overexpressing a myristoylated/activated form of AKT, coexpression of SMAD7 accelerated carcinogenesis and switched the phenotype from HCC to intrahepatic cholangiocarcinoma (iCCA) lesions. In human iCCA, SMAD7 expression was robustly up-regulated, especially in the most aggressive tumors, and directly correlated with the levels of YAP/NOTCH targets as well as cholangiocellular and EMT markers. CONCLUSIONS: The present data indicate that SMAD7 contributes to liver carcinogenesis by activating the YAP/NOTCH signaling cascade and inducing a cholangiocellular and EMT signature.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Proteína Smad7/genética , Idoso , Animais , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Receptores Notch/metabolismo , Proteína Smad7/metabolismo , Regulação para Cima , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA