Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(7): 4448-4457, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141672

RESUMO

While the properties of wurtzite GaAs have been extensively studied during the past decade, little is known about the influence of the crystal polytype on ternary (In,Ga)As quantum well structures. We address this question with a unique combination of correlated, spatially resolved measurement techniques on core-shell nanowires that contain extended segments of both the zincblende and wurtzite polytypes. Cathodoluminescence hyperspectral imaging reveals a blue-shift of the quantum well emission energy by 75 ± 15 meV in the wurtzite polytype segment. Nanoprobe X-ray diffraction and atom probe tomography enable k·p calculations for the specific sample geometry to reveal two comparable contributions to this shift. First, there is a 30% drop in In mole fraction going from the zincblende to the wurtzite segment. Second, the quantum well is under compressive strain, which has a much stronger impact on the hole ground state in the wurtzite than in the zincblende segment. Our results highlight the role of the crystal structure in tuning the emission of (In,Ga)As quantum wells and pave the way to exploit the possibilities of three-dimensional band gap engineering in core-shell nanowire heterostructures. At the same time, we have demonstrated an advanced characterization toolkit for the investigation of semiconductor nanostructures.

2.
Nano Lett ; 18(2): 811-819, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29345956

RESUMO

III-As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 21̅1̅0 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largely unaffected, leaving the band structure unperturbed. Diffraction patterns from the 011̅0 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.

3.
Adv Mater ; : e2310672, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38659412

RESUMO

The internal crystallinity of calcite is investigated for samples synthesized using two approaches: precipitation from solution and the ammonium carbonate diffusion method. Scanning electron microscopy (SEM) analyses reveal that the calcite products precipitated using both approaches have a well-defined rhombohedron shape, consistent with the euhedral crystal habit of the mineral. The internal structure of these calcite crystals is characterized using Bragg coherent diffraction imaging (BCDI) to determine the 3D electron density and the atomic displacement field. BCDI reconstructions for crystals synthesized using the ammonium carbonate diffusion approach have the expected euhedral shape, with internal strain fields and few internal defects. In contrast, the crystals synthesized by precipitation from solution have very complex external shapes and defective internal structures, presenting null electron density regions and pronounced displacement field distributions. These heterogeneities are interpreted as multiple crystalline domains, created by a nonclassical crystallization mechanism, where smaller nanoparticles coalescence into the final euhedral particles. The combined use of SEM, X-ray diffraction (XRD), and BCDI allows for structurally differentiating calcite crystals grown with different approaches, opening new opportunities to understand how grain boundaries and internal defects alter calcite reactivity.

4.
Nat Commun ; 11(1): 278, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937778

RESUMO

The microscopic motion of water is a central question, but gaining experimental information about the interfacial dynamics of water in fields such as catalysis, biophysics and nanotribology is challenging due to its ultrafast motion, and the complex interplay of inter-molecular and molecule-surface interactions. Here we present an experimental and computational study of the nanoscale-nanosecond motion of water at the surface of a topological insulator (TI), Bi[Formula: see text]Te[Formula: see text]. Understanding the chemistry and motion of molecules on TI surfaces, while considered a key to design and manufacturing for future applications, has hitherto been hardly addressed experimentally. By combining helium spin-echo spectroscopy and density functional theory calculations, we are able to obtain a general insight into the diffusion of water on Bi[Formula: see text]Te[Formula: see text]. Instead of Brownian motion, we find an activated jump diffusion mechanism. Signatures of correlated motion suggest unusual repulsive interactions between the water molecules. From the lineshape broadening we determine the diffusion coefficient, the diffusion energy and the pre-exponential factor.

5.
Sci Rep ; 6: 27776, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301423

RESUMO

Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well established method for examining the surface structure and dynamics of materials at atomic sized resolution and the spin-echo technique opens up the possibility of compressing the data acquisition process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several measurements. Recent developments on structured multilevel sampling that are empirically and theoretically shown to substantially improve upon the state of the art CS techniques are implemented. In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to construct continuous spectra. In order to measure both surface diffusion and surface phonons, which appear usually on different energy scales, standard CS techniques are not sufficient. However, the new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-echo and Raman spectroscopy.

6.
J Phys Chem Lett ; 7(24): 5285-5290, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973887

RESUMO

This work presents an experimental picture of molecular ballistic diffusion on a surface, a process that is difficult to pinpoint because it generally occurs on very short length scales. By combining neutron time-of-flight data with molecular dynamics simulations and density functional theory calculations, we provide a complete description of the ballistic translations and rotations of a polyaromatic hydrocarbon (PAH) adsorbed on the basal plane of graphite. Pyrene, C16H10, adsorbed on graphite is a unique system, where at relative surface coverages of about 10-20% its mean free path matches the experimentally accessible time/space scale of neutron time-of-flight spectroscopy (IN6 at the Institut Laue-Langevin). The comparison between the diffusive behavior of large and small PAHs such as pyrene and benzene adsorbed on graphite brings a strong experimental indication that the interaction between molecules is the dominating mechanism in the surface diffusion of polyaromatic hydrocarbons adsorbed on graphite.

7.
J Phys Condens Matter ; 22(30): 304014, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21399346

RESUMO

This paper gives a review of recent work on benzene diffusion on graphitic carbon surfaces using neutron and helium scattering spectroscopy as well as computational modelling. Recent spin-echo spectroscopy measurements have demonstrated that benzene/graphite displays almost perfect Brownian diffusion and that it can be used as a tool to study dynamic friction. Incoherent neutron backscattering measurements, on the other hand, reveal a jump diffusion behaviour, related to the molecular rotational modes of the benzene rings. Molecular dynamics (MD) simulations have delivered a very detailed picture of the adsorbate dynamics. We use this review to illustrate the open questions and possible future directions of this research field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA