Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Allergy Clin Immunol ; 153(1): 341-348.e3, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567393

RESUMO

BACKGROUND: Mutations in the recombinase-activating genes 1 and 2 (RAG1, RAG2) cause a spectrum of phenotypes, ranging from severe combined immune deficiency to combined immune deficiency with immune dysregulation (CID-ID). Hematopoietic cell transplantation is a curative option. Use of conditioning facilitates robust and durable stem cell engraftment and immune reconstitution but may cause toxicity. Transplantation from haploidentical donors is associated with poor outcome in patients with CID-ID. OBJECTIVES: We sought to evaluate multilineage engraftment and immune reconstitution after conditioning with CD45-antibody drug conjugate (CD45-ADC) as a single agent in hypomorphic mice with Rag1 mutation treated with congenic and haploidentical hematopoietic cell transplantation. METHODS: Rag1-F971L mice, a model of CID-ID, were conditioned with various doses of CD45-ADC, total body irradiation, or isotype-ADC, and then given transplants of total bone marrow cells from congenic or haploidentical donors. Flow cytometry was used to assess chimerism and immune reconstitution. Histology was used to document reconstitution of thymic architecture. RESULTS: Conditioning with CD45-ADC as a single agent allowed robust engraftment and immune reconstitution, with restoration of thymus, bone marrow, and peripheral compartments. The optimal doses of CD45-ADC were 1.5 mg/kg and 5 mg/kg for congenic and haploidentical transplantation, respectively. No graft-versus-host disease was observed. CONCLUSIONS: Conditioning with CD45-ADC alone allows full donor chimerism and immune reconstitution in Rag1 hypomorphic mice even following haploidentical transplantation, opening the way for the implementation of similar approaches in humans.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Humanos , Camundongos , Animais , Condicionamento Pré-Transplante , Transplante de Medula Óssea , Síndromes de Imunodeficiência/terapia , Proteínas de Homeodomínio/genética
2.
J Allergy Clin Immunol ; 147(1): 309-320.e6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387109

RESUMO

BACKGROUND: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. OBJECTIVES: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). METHODS: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl-conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. RESULTS: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. CONCLUSIONS: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.


Assuntos
Anticorpos Monoclonais/farmacologia , Transplante de Medula Óssea , Proteínas de Homeodomínio/genética , Imunoconjugados/farmacologia , Antígenos Comuns de Leucócito/antagonistas & inibidores , Saporinas/farmacologia , Imunodeficiência Combinada Severa/terapia , Condicionamento Pré-Transplante , Aloenxertos , Animais , Anticorpos Monoclonais/efeitos adversos , Proteínas de Homeodomínio/imunologia , Imunoconjugados/efeitos adversos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos Knockout , Saporinas/efeitos adversos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia
3.
Minerva Pediatr ; 72(5): 393-407, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32960006

RESUMO

Inborn errors of immunity are diseases of the immune system resulting from mutations that alter the expression of encoded proteins or molecules. Total updated number of these disorders is currently 406, with 430 different identified gene defects involved. Studies of the underlying mechanisms have contributed in better understanding the pathophysiology of the diseases, but also the complexity of the biology of innate and adaptive immune system and its interaction with microbes. In this review we present and briefly discuss Inborn Errors of Immunity caused by defects in genes encoding for receptors and protein of cellular membrane, including cytokine receptors, T cell antigen receptor (TCR) complex, cellular surface receptors or receptors signaling causing predominantly antibody deficiencies, co-stimulatory receptors and others. These alterations impact many biological processes of immune-system cells, including development, proliferation, activation and down-regulation of the immunological response, and result in a variety of diseases that present with distinct clinical features or with overlapping signs and symptoms.


Assuntos
Doenças do Sistema Imunitário/genética , Proteínas de Membrana/genética , Mutação , Receptores Coestimuladores e Inibidores de Linfócitos T/genética , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Humanos , Doenças do Sistema Imunitário/imunologia , Imunidade Celular/genética , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Superfície Celular/genética , Receptores de Citocinas/genética
4.
Clin Immunol ; 173: 121-123, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27713031

RESUMO

Recombination-activating gene (RAG) 1 and 2 mutations in humans cause T- B- NK+ SCID and Omenn syndrome, but milder phenotypes associated with residual protein activity have been recently described. We report a male patient with a diagnosis of common variable immunodeficiency (CVID) born from non-consanguineous parents, whose immunological phenotype was characterized by severe reduction of B cells and agammaglobulinemia for which several candidate genes were excluded by targeted Sanger sequencing. Next Generation Sequencing revealed two compound heterozygous mutations in the RAG1 gene: the previously described p.R624H, and the novel p.Y728H mutation, as well as the known polymorphism p.H249R. This case reinforces the notion of large phenotypic spectrum in RAG deficiency and opens questions on the management and follow-up of these patients.


Assuntos
Agamaglobulinemia/genética , Imunodeficiência de Variável Comum/genética , Proteínas de Homeodomínio/genética , Pólipos Nasais/genética , Agamaglobulinemia/imunologia , Linfócitos B/imunologia , Criança , Imunodeficiência de Variável Comum/imunologia , Humanos , Masculino , Mutação , Pólipos Nasais/imunologia , Fenótipo
7.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324638

RESUMO

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Éxons , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
8.
Blood Adv ; 4(12): 2611-2616, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32556283

RESUMO

The study of early T-cell development in humans is challenging because of limited availability of thymic samples and the limitations of in vitro T-cell differentiation assays. We used an artificial thymic organoid (ATO) platform generated by aggregating a DLL4-expressing stromal cell line (MS5-hDLL4) with CD34+ cells isolated from bone marrow or mobilized peripheral blood to study T-cell development from CD34+ cells of patients carrying hematopoietic intrinsic or thymic defects that cause T-cell lymphopenia. We found that AK2 deficiency is associated with decreased cell viability and an early block in T-cell development. We observed a similar defect in a patient carrying a null IL2RG mutation. In contrast, CD34+ cells from a patient carrying a missense IL2RG mutation reached full T-cell maturation, although cell numbers were significantly lower than in controls. CD34+ cells from patients carrying RAG mutations were able to differentiate to CD4+CD8+ cells, but not to CD3+TCRαß+ cells. Finally, normal T-cell differentiation was observed in a patient with complete DiGeorge syndrome, consistent with the extra-hematopoietic nature of the defect. The ATO system may help determine whether T-cell deficiency reflects hematopoietic or thymic intrinsic abnormalities and define the exact stage at which T-cell differentiation is blocked.


Assuntos
Células-Tronco Hematopoéticas , Linfopenia , Antígenos CD34 , Diferenciação Celular , Humanos , Organoides
9.
Front Pediatr ; 7: 353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508401

RESUMO

Inborn errors of immunity are genetic disorders with broad clinical manifestations, ranging from increased susceptibility to infections to significant immune dysregulation, often leading to multiple autoimmune phenomena, lymphoproliferation, and malignancy. The treatment is challenging as it requires careful balancing of immunosuppression in subjects at increased risk of infections. Recently, the improved ability to define inborn errors of immunity pathophysiology at the molecular level has set the basis for the development of targeted therapeutic interventions. Such a "precision medicine" approach is mainly bases on the use of available small molecules and biologics to target a specific cell function. In this article, we summarize the clinical and laboratory features of various recently described inborn errors of immunity associated with immune dysregulation and hyperinflammation in which mechanism-based therapeutic approaches have been implemented.

10.
Front Pediatr ; 7: 295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440487

RESUMO

Primary immunodeficiencies (PID) are disorders that for the most part result from mutations in genes involved in immune host defense and immunoregulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy. Most PID are due to genetic defects that are intrinsic to hematopoietic cells. Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells (HSC) represents a rational therapeutic approach. Full or partial ablation of the recipient's marrow with chemotherapy is often used to allow stable engraftment of donor-derived HSCs, and serotherapy may be added to the conditioning regimen to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially, hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe combined immunodeficiency (SCID) as the only available curative treatment. It was a challenging procedure, associated with elevated rates of morbidity and mortality. Overtime, outcome of HSCT for PID has significantly improved due to availability of high-resolution HLA typing, increased use of alternative donors and new stem cell sources, development of less toxic, reduced-intensity conditioning (RIC) regimens, and cellular engineering techniques for graft manipulation. Early identification of infants affected by SCID, prior to infectious complication, through newborn screening (NBS) programs and prompt genetic diagnosis with Next Generation Sequencing (NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT has been applied to treat a broader range of PID, including disorders of immune dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes associated with PID makes it difficult to define a universal transplant regimen. As such, integration of knowledge between immunologists and transplant specialists is necessary for the development of innovative transplant protocols and to monitor their results during follow-up. Despite the improved outcome observed after HSCT, patients with severe forms of PID still face significant challenges of short and long-term transplant-related complications. To address this issue, novel HSCT strategies are being implemented aiming to improve both survival and long-term quality of life. This article will discuss the current status and latest developments in HSCT for PID, and present data regarding approach and outcome of HSCT in recently described PID, including disorders associated with immune dysregulation.

11.
Front Immunol ; 8: 798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769923

RESUMO

Mutations of the recombinase-activating genes 1 and 2 (RAG1 and RAG2) in humans are associated with a broad range of phenotypes. For patients with severe clinical presentation, hematopoietic stem cell transplantation (HSCT) represents the only curative treatment; however, high rates of graft failure and incomplete immune reconstitution have been observed, especially after unconditioned haploidentical transplantation. Studies in mice have shown that Rag-/- natural killer (NK) cells have a mature phenotype, reduced fitness, and increased cytotoxicity. We aimed to analyze NK cell phenotype and function in patients with mutations in RAG and in non-homologous end joining (NHEJ) genes. Here, we provide evidence that NK cells from these patients have an immature phenotype, with significant expansion of CD56bright CD16-/int CD57- cells, yet increased degranulation and high perforin content. Correlation was observed between in vitro recombinase activity of the mutant proteins, NK cell abnormalities, and in vivo clinical phenotype. Addition of serotherapy in the conditioning regimen, with the aim of depleting the autologous NK cell compartment, may be important to facilitate engraftment and immune reconstitution in patients with RAG and NHEJ defects treated by HSCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA