Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(4): 044801, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491266

RESUMO

The interaction rate of a charged particle beam with the atomic nuclei of a target varies significantly if the target has a crystalline structure. In particular, under specific orientations of the target with respect to the incident beam, the probability of inelastic interaction with nuclei can be enhanced with respect to the unaligned case. This effect, which can be named antichanneling, can be advantageously used in the cases where the interaction between beam and target has to be maximized. Here we propose to use antichanneling to increase the radioisotope production yield via cyclotron. A dedicated set of experimental measurements was carried out at the INFN Legnaro Laboratories with the AN2000 and CN accelerators to prove the existence of the antichanneling effect. The variation of the interaction yield at hundreds of keV to MeV energies was observed by means of sapphire and indium phosphide crystals, achieving an enhancement of the interaction rate up to 73% and 25%, respectively. Such a result may pave the way to the development of a novel type of nozzle for the existing cyclotrons, which can exploit crystalline materials as targets for radioisotope production, especially to enhance the production rate for expensive prime materials with minor upgrades of the current instrumentation.

2.
Phys Rev Lett ; 121(2): 021603, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085729

RESUMO

We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline electromagnetic field. The data collected at the external lines of the CERN Super Proton Synchrotron were critically compared to Monte Carlo simulations based on the Baier-Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of 5 in the case of beam alignment with the [001] crystal axes. The observed effect opens the way to the realization of compact electromagnetic calorimeters or detectors based on oriented scintillator crystals in which the amount of material can be strongly reduced with respect to the state of the art. These devices could have relevant applications in fixed-target experiments, as well as in satellite-borne γ telescopes.

3.
Eur Phys J C Part Fields ; 78(9): 720, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839741

RESUMO

Charged particle beams can be manipulated by exploiting the channeling phenomenon in bent crystals. Two plate-like crystals, bent by mechanical holders, were manufactured and characterised for such purpose at the Sensor and Semiconductor Laboratory in Ferrara, Italy. An anticlastic curvature was obtained for these crystals, achieving a steering angle of the order of 1 mrad, which is about 20 times larger than the values currently achieved for the bent crystals used in the LHC for collimation experiments. Finally, a Geant4 simulation was performed to study the channeling efficiency for beam deflection with 400 GeV/c and 7 TeV/c proton beams. Such crystals represent technological progress in the development of bent crystals for highly energetic charged particle beams. Indeed, they are designed to impart an angular kick to a 7 TeV/c proton beam with unprecedented high efficiency. Therefore, this study demonstrates the possibility of realizing bent crystals suitable for beam extraction in high-energy hadron accelerators, such as LHC or at the future FCC. A further series of studies should be conducted to evaluate the channeling efficiency and the deflection angle of the realized crystals via a charged proton beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA