Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Rev ; 98(1): 505-553, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351514

RESUMO

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.


Assuntos
Angiotensina I/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Proto-Oncogene Mas , Transdução de Sinais
2.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577921

RESUMO

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Assuntos
Tecido Adiposo , Proto-Oncogene Mas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Animais , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/metabolismo , Obesidade/patologia , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais
3.
Horm Behav ; 163: 105551, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678724

RESUMO

Alamandine is a peptide hormone belonging to the renin-angiotensin system (RAS). It acts through the Mas-related G-protein coupled receptor type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we hypothesize that a lack of alamandine, through MrgD, could cause the anxiety-like behavior in transgenic rats with low brain angiotensinogen [TGR(ASrAOGEN)680]. Adult male transgenic rats exhibited a significant increase in the latency to feeding time in the novelty suppressed feeding test and a decrease in the percentage of time and entries in the open arms in the elevated plus maze. These effects were reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas and MrgD receptor antagonist, prevented the anxiolytic effects induced by this peptide. However, its effects were not altered by the selective Mas receptor antagonist, A779. In conclusion, our data indicates that alamandine, through MrgD, attenuates anxiety-like behavior in male TGR(ASrAOGEN)680, which reinforces the importance of the counter-regulatory RAS axis as promising target for the treatment of neuropsychiatric disorders.


Assuntos
Angiotensinogênio , Ansiolíticos , Ansiedade , Encéfalo , Ratos Transgênicos , Receptores Acoplados a Proteínas G , Animais , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiolíticos/farmacologia , Angiotensinogênio/metabolismo , Angiotensinogênio/genética , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/metabolismo , Oligopeptídeos/farmacologia , Proteínas do Tecido Nervoso
4.
Inflamm Res ; 73(6): 1019-1031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656426

RESUMO

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator. It is not known whether the pro-resolving effects of Ang-(1-7) are sustained and protect the lung from a subsequent inflammatory challenge. This study sought to investigate the impact of treatment in face of a second allergic or lipopolysaccharide (LPS) challenge. METHODS: Mice, sensitized and challenged with ovalbumin (OVA), received a single Ang-(1-7) dose at the peak of eosinophilic inflammation, 24 h after the final OVA challenge. Subsequently, mice were euthanized at 48, 72, 96, and 120 h following the OVA challenge, and cellular infiltrate, inflammatory mediators, lung histopathology, and macrophage-mediated efferocytic activity were evaluated. The secondary inflammatory stimulus (OVA or LPS) was administered 120 h after the last OVA challenge, and subsequent inflammatory analyses were performed. RESULTS: Treatment with Ang-(1-7) resulted in elevated levels of IL-10, CD4+Foxp3+, Mres in the lungs and enhanced macrophage-mediated efferocytic capacity. Moreover, in allergic mice treated with Ang-(1-7) and then subjected to a secondary OVA challenge, inflammation was also reduced. Similarly, in mice exposed to LPS, Ang-(1-7) effectively prevented the lung inflammation. CONCLUSION: A single dose of Ang-(1-7) resolves lung inflammation and protect the lung from a subsequent inflammatory challenge highlighting its potential therapeutic for individuals with asthma.


Assuntos
Angiotensina I , Lipopolissacarídeos , Pulmão , Ovalbumina , Fragmentos de Peptídeos , Animais , Angiotensina I/uso terapêutico , Angiotensina I/farmacologia , Angiotensina I/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Fragmentos de Peptídeos/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/imunologia , Ovalbumina/imunologia , Camundongos , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Camundongos Endogâmicos BALB C , Inflamação/tratamento farmacológico , Eosinofilia/tratamento farmacológico , Eosinofilia/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia
5.
Acta Neuropsychiatr ; 35(1): 27-34, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35979816

RESUMO

OBJECTIVES: To evaluate the impact of genetic deletion of receptors of the counterregulatory arms of the renin-angiotensin system in depressive-like behaviours. METHODS: 8-12 weeks-old male mice wild type (WT, C57BL/6J) and mice with genetic deletion of MrgD (MrgD KO) or Mas receptors (Mas KO) were subjected to the Forced Swim Test (FST) and the Tail Suspension Test (TST). Brain-derived neurotrophic factor (BDNF) levels were measured by enzyme-linked immunosorbent assay (ELISA). Blockade of Mas was performed by acute intracerebroventricular (icv) injection of its selective antagonist, A779. RESULTS: No statistical difference in immobility time was observed between MrgD KO and WT male animals subjected to FST and TST. However, acute icv injection of A779 significantly increased the immobility time of MrgD KO male mice subjected to FST and TST, suggesting the involvement of Mas in preventing depressive-like behaviour. Indeed, Mas KO male animals showed increased immobility time in FST and TST, evidencing a depressive-like behaviour in these animals, in addition to a reduction in BDNF levels in the prefrontal cortex and hippocampus. No changes in BDNF levels were observed in MrgD KO male animals. CONCLUSION: Our data showed that Mas plays an important role in the neurobiology of depression probably by modulating BDNF expression. On the contrary, lack of MrgD did not alter depressive-like behaviour, which was supported by the lack of alterations in BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Masculino , Animais , Depressão/genética , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Elevação dos Membros Posteriores , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo
6.
Clin Sci (Lond) ; 135(11): 1353-1367, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013320

RESUMO

In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin-angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.


Assuntos
Angiotensina II/metabolismo , Eritropoese/fisiologia , Homeostase/fisiologia , Sistema Renina-Angiotensina/fisiologia , Animais , Encéfalo/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Receptor Tipo 1 de Angiotensina/metabolismo , Renina/metabolismo
7.
Clin Sci (Lond) ; 135(18): 2197-2216, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34494083

RESUMO

Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.


Assuntos
Angiotensina I/metabolismo , Sistema Cardiovascular/metabolismo , Hemodinâmica , Hipertensão/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Sistema Nervoso Simpático/metabolismo , Angiotensina I/genética , Animais , Arginina Vasopressina/metabolismo , Fator Natriurético Atrial/metabolismo , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Sistema Cardiovascular/fisiopatologia , Modelos Animais de Doenças , Genótipo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hemodinâmica/genética , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Fragmentos de Peptídeos/genética , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Proteínas Recombinantes de Fusão/metabolismo , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Resistência Vascular
8.
Horm Behav ; 127: 104880, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129833

RESUMO

Alamandine (Ala1-Arg2-Val3-Tyr4-Ile5-His6-Pro7), a heptapeptide hormone of the renin-angiotensin system (RAS), exerts its effects through the Mas-related G-protein coupled receptor of the type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we tested the hypothesis that alamandine could attenuate the depression-like behavior observed in transgenic rats with low brain angiotensinogen, TGR (ASrAOGEN)680. Transgenic rats exhibited a significant increase in the immobility time in forced swim test, a phenotype reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas/MrgD receptor antagonist, prevented the antidepressant-like effect induced by this peptide demonstrating, for the first time, that alamandine through MrgD receptor, can modulate depression-like behavior in TGR (ASrAOGEN)680. This result shows an action of alamandine which strengthens the importance of the counter-regulatory arms of the RAS in fight and treatment of neuropsychiatric diseases.


Assuntos
Angiotensinogênio/genética , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Oligopeptídeos/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Angiotensina I/farmacologia , Angiotensinogênio/metabolismo , Animais , Encéfalo/metabolismo , Injeções Intraventriculares , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oligopeptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo
9.
Pharmacol Res ; 163: 105292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171305

RESUMO

Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.


Assuntos
Angiotensina I/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Infecções Pneumocócicas/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Acoplados a Proteínas G/imunologia , Células A549 , Angiotensina I/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Cães , Humanos , Vírus da Influenza A , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fragmentos de Peptídeos/farmacologia , Peroxidase/imunologia , Fagocitose/efeitos dos fármacos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Streptococcus pneumoniae
10.
Am J Physiol Cell Physiol ; 318(4): C740-C750, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913703

RESUMO

Overstimulation of the renin-angiotensin system (RAS) has been implicated in the pathogenesis of various cardiovascular diseases. Alamandine is a peptide newly identified as a protective component of the RAS; however, the mechanisms involved in its beneficial effects remain elusive. By using a well-characterized rat model of hypertension, the TGR (mREN2)27, we show that mREN ventricular myocytes are prone to contractile enhancement mediated by short-term alamandine (100 nmol/L) stimulation of Mas-related G protein-coupled receptor member D (MrgD) receptors, while Sprague-Dawley control cells showed no effect. Additionally, alamandine prevents the Ca2+ dysregulation classically exhibited by freshly isolated mREN myocytes. Accordingly, alamandine treatment of mREN myocytes attenuated Ca2+ spark rate and enhanced Ca2+ reuptake to the sarcoplasmic reticulum. Along with these findings, KN-93 fully inhibited the alamandine-induced increase in Ca2+ transient magnitude and phospholamban (PLN) phosphorylation at Thr17, indicating CaMKII as a downstream effector of the MrgD signaling pathway. In mREN ventricular myocytes, alamandine treatment induced significant nitric oxide (NO) production. Importantly, NO synthase inhibition prevented the contractile actions of alamandine, including PLN-Thr17 phosphorylation at the CaMKII site, thereby indicating that NO acts upstream of CaMKII in the alamandine downstream signaling. Altogether, our results show that enhanced contractile responses mediated by alamandine in cardiomyocytes from hypertensive rats occur through a NO-dependent activation of CaMKII.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oligopeptídeos/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Animais , Proteínas de Ligação ao Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Clin Sci (Lond) ; 134(23): 3063-3078, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33264412

RESUMO

In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin-angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Tratamento Farmacológico da COVID-19 , Sistema Renina-Angiotensina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Humanos , Oligopeptídeos/farmacologia , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/patogenicidade
12.
Am J Physiol Heart Circ Physiol ; 316(1): H123-H133, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339496

RESUMO

We have recently described a new peptide of the renin-angiotensin system, alamandine, a derivative of angiotensin-(1-7). Mas-related G protein-coupled receptor member D (MrgD) was identified as its receptor. Although similar cardioprotective effects of alamandine to those of angiotensin-(1-7) have been described, the significance of this peptide in heart function is still elusive. We aimed to evaluate the functional role of the alamandine receptor MrgD in the heart using MrgD-deficient mice. MrgD was localized in cardiomyocytes by immunofluorescence using confocal microscopy. High-resolution echocardiography was performed in wild-type and MrgD-deficient mice (2 and 12 wk old) under isoflurane anesthesia. Standard B-mode images were obtained in the right and left parasternal long and short axes for morphological and functional assessment and evaluation of cardiac deformation. Additional heart function evaluation was performed using Langendorff isolated heart preparations and inotropic measurements of isolated cardiomyocytes. Immunofluorescence indicated that the MrgD receptor is expressed in cardiomyocytes, mainly in the membrane and perinuclear and nuclear regions. Echocardiography showed left ventricular remodeling and severe dysfunction in MrgD-deficient mice. Strikingly, MrgD-deficient mice presented a pronounced dilated cardiomyopathy with a marked decrease in systolic function. Echocardiographic changes were supported by the data obtained in isolated hearts and inotropic measurements in cardiomyocytes. Our data add new evidence for a major role for alamandine/MrgD in the heart. Furthermore, our results indicate that we have identified a new gene implicated in dilated cardiomyopathy, unveiling a new target for translational approaches aimed to treat heart diseases. NEW & NOTEWORTHY The renin-angiotensin system is a key target for cardiovascular therapy. We have recently identified a new vasodepressor/cardioprotective angiotensin, alamandine. Here, we unmasked a key role for its receptor, Mas-related G protein-coupled receptor member D (MrgD), in heart function. The severe dilated cardiomyopathy observed in MrgD-deficient mice warrants clinical and preclinical studies to unveil its potential use in cardiovascular therapy.


Assuntos
Cardiomiopatia Dilatada/genética , Deleção de Genes , Receptores Acoplados a Proteínas G/genética , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptores Acoplados a Proteínas G/metabolismo , Remodelação Ventricular
13.
Clin Sci (Lond) ; 133(5): 629-643, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737255

RESUMO

Aims: The renin-angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPßCD (2-Hydroxypropyl-ß-cyclodextrin), 30 µg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-ß (TGF-ß) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1ß (IL-1ß), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Torácica/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Oligopeptídeos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Adv Physiol Educ ; 43(2): 199-206, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30998104

RESUMO

Here we described two activities related to Women in Science: one main conference and one symposium, both developed during the Annual Congress of the Brazilian Physiological Society, which were held within the XXXIII Annual Meeting of the Federation of Brazilian Experimental Biology Societies, from September 3-6, 2018, in Campos do Jordão (SP/Brazil). This conference and the symposium were among the most popular activities of the congress. This is important because the activities addressed important issues, including the fact that only 29% of the worlds' researchers are women, and women have difficulty progressing in a scientific career. Our report discusses why and which strategies could change this reality. We believe this symposium has not only contributed to advance and bring insights to physiological sciences, but, more importantly, it inspired and motivated physiologists to think about gender balance and the contribution and participation of women in physiological science.


Assuntos
Escolha da Profissão , Congressos como Assunto , Identidade de Gênero , Fisiologia/economia , Fisiologia/métodos , Sociedades Científicas , Brasil , Congressos como Assunto/tendências , Feminino , Humanos , Fisiologia/tendências , Sociedades Científicas/tendências
15.
Chin J Physiol ; 62(5): 226-230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31670287

RESUMO

Angiotensin-(1-7) (Ang-[1-7]) can modulate glucose metabolism and protect against muscular damage. The aim of this study was to investigate the influence of lifetime increase of circulating levels of Ang-(1-7) at exhaustive swimming exercise (ESE). Sprague-Dawley (SD) and transgenic rats TGR(A1-7)3292 (TR) which overproduce Ang-(1-7) (2.5-fold increase) were submitted to ESE. The data showed no differences in time to exhaustion (SD: 4.90 ± 1.37 h vs. TR: 5.15 ± 1.15 h), creatine kinase, and transforming growth factor beta (TGF-ß). Lactate dehydrogenase (SD: 219.9 ± 12.04 U/L vs. TR: 143.9 ± 35.21 U/L) and α-actinin (SD: 336.7 ± 104.5 U/L vs. TR: 224.6 ± 82.45 U/L) values were significantly lower in TR. There was a significant decrease in the range of blood glucose levels (SD: -41.4 ± 28.32 mg/dl vs. TR: -13.08 ± 39.63 mg/dl) in SD rats. Muscle (SD: 0.06 ± 0.02 mg/g vs. TR: 0.13 ± 0.01 mg/g) and hepatic glycogen (SD: 0.66 ± 0.36 mg/g vs. TG: 2.24 ± 1.85 mg/g) in TR were higher. The TR presented attenuation of the increase in skeletal muscle damage biomarkers and of the changes in glucose metabolism after ESE.


Assuntos
Músculo Esquelético , Angiotensina I , Animais , Biomarcadores , Fragmentos de Peptídeos , Ratos , Ratos Sprague-Dawley
16.
Clin Sci (Lond) ; 132(11): 1117-1133, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29685981

RESUMO

Patients with hyperthyroidism exhibit increased risk of development and progression of cardiac diseases. The activation of the renin-angiotensin system (RAS) has been indirectly implicated in these cardiac effects observed in hyperthyroidism. Angiotensin-(1-7) (Ang-(1-7)) has previously been shown to counterbalance pathological effects of angiotensin II (Ang II). The aim of the present study was to investigate the effects of elevated circulating Ang-(1-7) levels on cardiac effects promoted by hyperthyroidism in a transgenic rat (TG) model that constitutively overexpresses an Ang-(1-7)-producing fusion protein [TGR(A1-7)3292]. TG and wild-type (WT) rats received daily injections (i.p.) of triiodothyronine (T3; 7 µg/100 g of body weight (BW)) or vehicle for 14 days. In contrast with WT rats, the TG rats did not develop cardiac hypertrophy after T3 treatment. Indeed, TG rats displayed reduced systolic blood pressure (SBP) and cardiac hyperdynamic condition induced by hyperthyroidism. Moreover, increased plasma levels of Ang II observed in hyperthyroid WT rats were prevented in TG rats. TG rats were protected from glycogen synthase kinase 3ß (GSK3ß) inactivation and nuclear factor of activated T cells (NFAT) nuclear accumulation induced by T3. In vitro studies evidenced that Ang-(1-7) prevented cardiomyocyte hypertrophy and GSK3ß inactivation induced by T3. Taken together, these data reveal an important cardioprotective action of Ang-(1-7) in experimental model of hyperthyroidism.


Assuntos
Angiotensina I/fisiologia , Cardiomegalia/etiologia , Glicogênio Sintase Quinase 3 beta/fisiologia , Hipertireoidismo/complicações , Fatores de Transcrição NFATC/fisiologia , Fragmentos de Peptídeos/fisiologia , Angiotensina I/sangue , Angiotensina I/farmacologia , Animais , Cardiomegalia/sangue , Cardiomegalia/diagnóstico por imagem , Células Cultivadas , Ecocardiografia , Hipertireoidismo/sangue , Hipertireoidismo/induzido quimicamente , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacologia , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Tri-Iodotironina/farmacologia
17.
Curr Hypertens Rep ; 20(2): 17, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29541937

RESUMO

PURPOSE OF REVIEW: The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1-7) [Ang-(1-7)] and alamandine in experimental hypertension and atherosclerosis. RECENT FINDINGS: The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1-7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis. While the beneficial effects of Ang-(1-7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1-7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis.


Assuntos
Angiotensina I/metabolismo , Aterosclerose , Hipertensão , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Modelos Teóricos , Sistema Renina-Angiotensina/fisiologia , Vasodilatação/fisiologia
18.
Nanomedicine ; 14(3): 781-788, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29278747

RESUMO

There are multiple challenges for neuropharmacology in the future. Undoubtedly, one of the greatest challenges is the development of strategies for pharmacological targeting of specific brain regions for treatment of diseases. GABA is the main inhibitory neurotransmitter in the central nervous system, and dysfunction of GABAergic mechanisms is associated with different neurological conditions. Liposomes are lipid vesicles that are able to encapsulate chemical compounds and are used for chronic drug delivery. This short review reports our experience with the development of liposomes for encapsulation and chronic delivery of GABA to sites within the brain. Directions for future research regarding the efficacy and practical use of GABA-containing liposomes for extended periods of time as well as understanding and targeting neurological conditions are discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Doenças do Sistema Nervoso/terapia , Ácido gama-Aminobutírico/administração & dosagem , Animais , Humanos , Lipossomos/química , Ácido gama-Aminobutírico/química
19.
Int J Sports Med ; 39(10): 743-748, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29940668

RESUMO

The development of new strategies to attenuate exercise-induced muscle damage may be helpful for training regimens. The aim of this study was to determine whether a oral formulation of angiotensin Ang-(1-7)[HPßCD/Ang-(1-7)] is effective to reduce pain, and muscle damage markers after eccentric-overload exercise. HPßCD (Placebo) and HPßCD/Ang-(1-7) (Ang-(1-7) group were treated for 7 days (one capsule/day). The pain was measured by visual analogue scale, maximal strength (MS) using force platform. Blood samples were collected for cytokines and creatine kinase (CK) analysis. The Ang-(1-7)-treated group reported less pain immediately (3.46±0.64 vs. placebo 3.80±0.77 cm) and 24 h after exercise (3.07±0.71 vs. 3.73±0.58 cm placebo) and higher MS at 24 h (24±12 N) and 48 h (30±15 N) vs. placebo (-8±9 N and -10±9 N). The CK for Ang-(1-7) (0.5±0.1 and 0.9±0.2 U/L) were lower at 48 and 72 h vs. placebo (fold changes of 1.7±0.5 and 1.5±0.3 U/L). The TNF-α level was lower in the treated group post-exercise (38±2.5 pg/ml) vs. placebo (45±2.9 pg/ml) but no significant changes were observed for IL-6 and IL-10. Our data indicate that treatment with Ang-(1-7) may attenuate pain, some of the muscle damage markers and improves performance following eccentric exercise.


Assuntos
Angiotensina I/uso terapêutico , Suplementos Nutricionais , Exercício Físico/fisiologia , Músculo Esquelético/lesões , Mialgia/prevenção & controle , Fragmentos de Peptídeos/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Adulto , Biomarcadores/sangue , Creatina Quinase/sangue , Citocinas/sangue , Método Duplo-Cego , Excipientes , Teste de Esforço , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Força Muscular/fisiologia , RNA Mensageiro/metabolismo , Adulto Jovem
20.
Stress ; 20(2): 189-196, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28288545

RESUMO

Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can reduce some of the effects of stress. We found that angiotensin-(1-7), acting in the brain, can reduce anxiety and reduce the increase in heart rate associated with emotional stress. These findings may provide a lead for design of new drugs to reduce stress.


Assuntos
Angiotensina I/genética , Ansiedade/genética , Frequência Cardíaca/fisiologia , Fragmentos de Peptídeos/genética , Estresse Psicológico/fisiopatologia , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Animais Geneticamente Modificados , Frequência Cardíaca/efeitos dos fármacos , Masculino , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA