Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
RNA ; 25(9): 1130-1149, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31175170

RESUMO

Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and from age- and sex-matched controls. This allowed us to describe for the first time the mRNA expression and splicing profile of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards splicing using preferentially U2 sites in TALS patients' cells compared to controls.


Assuntos
Nanismo/genética , Retardo do Crescimento Fetal/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Splicing de RNA/genética , Transcriptoma/genética , Adulto , Idoso , Sequência de Bases/genética , Pré-Escolar , Sequência Consenso/genética , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Lactente , Íntrons/genética , Masculino , Pessoa de Meia-Idade , RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Adulto Jovem
2.
PLoS Pathog ; 9(10): e1003745, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204279

RESUMO

Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when silenced, constitute promising targets for the development of more specific and safer control means.


Assuntos
Genes de Helmintos/fisiologia , Doenças das Plantas/parasitologia , Tylenchoidea/genética , Animais , Estudo de Associação Genômica Ampla , Humanos , Interferência de RNA , Tylenchoidea/metabolismo
3.
Nat Commun ; 7: 11067, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063795

RESUMO

Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.


Assuntos
Processamento Alternativo/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/fisiopatologia , Distrofia Miotônica/complicações , Distrofia Miotônica/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Idoso , Animais , Sequência de Bases , Sítios de Ligação , Simulação por Computador , Fenômenos Eletrofisiológicos , Éxons/genética , Feminino , Células HEK293 , Sistema de Condução Cardíaco/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Motivos de Nucleotídeos/genética , Proteínas de Ligação a RNA/metabolismo , Canais de Sódio/metabolismo , Xenopus
4.
J Clin Invest ; 125(3): 1124-8, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25642776

RESUMO

Idiopathic scoliosis (IS) is a spine deformity that affects approximately 3% of the population. The underlying causes of IS are not well understood, although there is clear evidence that there is a genetic component to the disease. Genetic mapping studies suggest high genetic heterogeneity, but no IS disease-causing gene has yet been identified. Here, genetic linkage analyses combined with exome sequencing identified a rare missense variant (p.A446T) in the centriolar protein gene POC5 that cosegregated with the disease in a large family with multiple members affected with IS. Subsequently, the p.A446T variant was found in an additional set of families with IS and in an additional 3 cases of IS. Moreover, POC5 variant p.A455P was present and linked to IS in one family and another rare POC5 variant (p.A429V) was identified in an additional 5 cases of IS. In a zebrafish model, expression of any of the 3 human IS-associated POC5 variant mRNAs resulted in spine deformity, without affecting other skeletal structures. Together, these findings indicate that mutations in the POC5 gene contribute to the occurrence of IS.


Assuntos
Proteínas de Transporte/genética , Escoliose/genética , Animais , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Mutação de Sentido Incorreto , Linhagem , Polimorfismo de Nucleotídeo Único , Peixe-Zebra
5.
PLoS One ; 7(11): e50875, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226415

RESUMO

Lateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism. With the availability of whole genome sequences it is now possible to assess whether LGT have significantly contributed to the composition of an animal genome and to establish a comprehensive list of these events. We generated clusters of homologous genes and automated phylogenetic inference, to detect LGT in the genomes of root-knot nematodes and found that up to 3.34% of the genes originate from LGT of non-metazoan origin. After their acquisition, the majority of genes underwent series of duplications. Compared to the rest of the genes in these species, several predicted functional categories showed a skewed distribution in the set of genes acquired via LGT. Interestingly, functions related to metabolism, degradation or modification of carbohydrates or proteins were substantially more frequent. This suggests that genes involved in these processes, related to a parasitic lifestyle, have been more frequently fixed in these parasites after their acquisition. Genes from soil bacteria, including plant-pathogens were the most frequent closest relatives, suggesting donors were preferentially bacteria from the rhizosphere. Several of these bacterial genes are plasmid-borne, pointing to a possible role of these mobile genetic elements in the transfer mechanism. Our analysis provides the first comprehensive description of the ensemble of genes of non-metazoan origin in an animal genome. Besides being involved in important processes regarding plant-parasitism, genes acquired via LGT now constitute a substantial proportion of protein-coding genes in these nematode genomes.


Assuntos
Transferência Genética Horizontal/genética , Genoma/genética , Parasitos/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/genética , Animais , Bactérias/genética , Composição de Bases/genética , Códon/genética , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Genes de Protozoários/genética , Estudos de Associação Genética , Fases de Leitura Aberta/genética , Filogenia , Plasmídeos/genética , Proteínas de Protozoários/genética , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo
6.
Appl Transl Genom ; 7: 19-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27054081

RESUMO

In recent years, molecular genetics has been playing an increasing role in the diagnostic process of monogenic epilepsies. Knowing the genetic basis of one patient's epilepsy provides accurate genetic counseling and may guide therapeutic options. Genetic diagnosis of epilepsy syndromes has long been based on Sanger sequencing and search for large rearrangements using MLPA or DNA arrays (array-CGH or SNP-array). Recently, next-generation sequencing (NGS) was demonstrated to be a powerful approach to overcome the wide clinical and genetic heterogeneity of epileptic disorders. Coverage is critical for assessing the quality and accuracy of results from NGS. However, it is often a difficult parameter to display in practice. The aim of the study was to compare two library-building methods (Haloplex, Agilent and SeqCap EZ, Roche) for a targeted panel of 41 genes causing monogenic epileptic disorders. We included 24 patients, 20 of whom had known disease-causing mutations. For each patient both libraries were built in parallel and sequenced on an Ion Torrent Personal Genome Machine (PGM). To compare coverage and depth, we developed a simple homemade tool, named DeCovA (Depth and Coverage Analysis). DeCovA displays the sequencing depth of each base and the coverage of target genes for each genomic position. The fraction of each gene covered at different thresholds could be easily estimated. None of the two methods used, namely NextGene and Ion Reporter, were able to identify all the known mutations/CNVs displayed by the 20 patients. Variant detection rate was globally similar for the two techniques and DeCovA showed that failure to detect a mutation was mainly related to insufficient coverage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA