Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Angew Chem Int Ed Engl ; 62(12): e202213968, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36625361

RESUMO

Both oxygen vacancies and surface hydroxyls play a crucial role in catalysis. Yet, their relationship is not often explored. Herein, we prepare two series of TiO2 (rutile and P25) with increasing oxygen deficiency and Ti3+ concentration by pulsed laser defect engineering in liquid (PUDEL), and selectively quantify the acidic and basic surface OH by fluoride substitution. As indicated by EPR spectroscopy, the laser-generated Ti3+ exist near the surface of rutile, but appear to be deeper in the bulk for P25. Fluoride substitution shows that extra acidic bridging OH are selectively created on rutile, while the surface OH density remains constant for P25. These observations suggest near-surface Ti3+ are highly related to surface bridging OH, presumably the former increasing the electron density of the bridging oxygen to form more of the latter. We anticipate that fluoride substitution will enable better characterization of surface OH and its correlation with defects in metal oxides.

2.
J Am Chem Soc ; 142(43): 18619-18627, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32954719

RESUMO

The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this short-lived species in between two condensed matter layers. In this study, we develop a novel optoelectronic technique for the characterization of the birth and structural evolution of solvated electrons at the metal/liquid interface with a femtosecond time resolution. Using this tool, we record for the first time the transient spectra (in a photon energy range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs revealing several novel aspects of their properties at the interface. Especially the transient species show state-dependent optical transition behaviors from being isotropic in the hot state to perpendicular to the surface in the trapped and solvated states. The technique will enable a better understanding of hot electron driven reactions at electrochemical interfaces.

3.
Phys Chem Chem Phys ; 21(35): 19147-19152, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31432808

RESUMO

Understanding how electrolyte composition controls electrocatalytic reactions requires molecular-level insight into electrode/electrolyte interaction. Perhaps the most basic aspect of this interaction, the speciation of the interfacial ion, is often controversial for even relatively simple systems. For example, for Pt(111) in 0.5 M H2SO4 it has long been debated whether the adsorbed anion is SO42-, HSO4- or an H3O+SO42- ion pair. Here we apply interface-specific vibrational sum frequency (VSF) spectroscopy and theory to this problem and perform an isotope exchange study: we collect VSF spectra of Pt(111) in H2SO4(H2O) and D2SO4(D2O) as a function of bias and show that at all potentials they are identical. This is the most direct spectroscopic evidence to date that SO42- is the dominant adsorbate, despite the fact that at 0.5 M H2SO4 bulk solution is dominated by HSO4-. This approach is based on the unique selection rule of the VSF spectroscopy and thus offers a new way of accessing general electrode/electrolyte interaction in electrocatalysis.

4.
J Phys Chem A ; 123(51): 11022-11030, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31790247

RESUMO

Recent years have seen a huge progress in the development of phase-sensitive second-order laser spectroscopy which has proven to be a very powerful tool for the investigation of interfaces. In these techniques, the nonlinear interaction between two short laser pulses and the sample yields a signal pulse which subsequently interferes with a third pulse, the so-called local oscillator. To obtain accurate phase information, the relative phases between the signal and local oscillator pulses must be stabilized and their timings precisely controlled. Despite much progress made, fulfilling both requirements remains a formidable experimental challenge. The two common approaches employ different beam geometries which each yields its particular advantages and deficiencies. While noncollinear spectrometers allow for a relatively simple timing control they typically yield poor phase stability and require a challenging alignment. Collinear approaches in contrast come with a simplified alignment and improved phase stability but typically suffer from a highly limited timing control. In this contribution we present a general experimental solution which allows for combining the advantages of both approaches while being compatible with most of the common spectrometer types. On the basis of a collinear geometry, we exploit different selected polarization states of the light pulses in well-defined places in the spectrometer to achieve a precise timing control. The combination of this technique with a balanced detection scheme allows for the acquisition of highly accurate phase-resolved nonlinear spectra without any loss in experimental flexibility. In fact, we show that the implementation of this technique allows us to employ advanced pulse timing schemes inside the spectrometer, which can be used to suppress nonlinear background signals and extend the capabilities of our spectrometer to measure phase-resolved sum frequency spectra of interfaces in a liquid cell.

5.
J Chem Phys ; 150(24): 244701, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255084

RESUMO

Water can adsorb molecularly or dissociatively onto different sites of metal oxide surfaces. These adsorption sites can be disentangled using surface-sensitive vibrational spectroscopy. Here, we model Vibrational Sum Frequency (VSF) spectra for various forms of dissociated, deuterated water on a reconstructed, Al-terminated α-Al2O3(0001) surface at submonolayer coverages (the so-called 1-2, 1-4, and 1-4' modes). Using an efficient scheme based on velocity-velocity autocorrelation functions, we go beyond previous normal mode analyses by including anharmonicity, mode coupling, and thermal surface motion in the framework of ab initio molecular dynamics. In this way, we calculate vibrational density of states curves, infrared, and VSF spectra. Comparing computed VSF spectra with measured ones, we find that relative frequencies of resonances are in quite good agreement and linewidths are reasonably well represented, while VSF intensities coincide not well. We argue that intensities are sensitively affected by local interactions and thermal fluctuations, even at such low coverage, while absolute peak positions strongly depend on the choice of the electronic structure method and on the appropriate inclusion of anharmonicity.

6.
Chem Rev ; 116(13): 7642-72, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27314430

RESUMO

Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.


Assuntos
Hidrogênio/química , Hidróxidos/química , Água/química , Ácidos/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Químicos , Simulação de Dinâmica Molecular , Estrutura Molecular , Teoria Quântica , Tensão Superficial
7.
Phys Chem Chem Phys ; 20(40): 25875-25882, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30288514

RESUMO

Much work over the last 25 years has demonstrated that the interface-specific, all-optical technique, vibrational sum frequency generation (v-SFG) spectroscopy, is often uniquely capable of characterizing the structure and dynamics of interfacial species. The desired information in such a measurement is the complex second order susceptibility which gives rise to the nonlinear response from interfacial molecules. The ability to detect molecular species yielding only small contributions to the susceptibility is meanwhile limited by the precision by which the spectral phase and amplitude can be determined. In this study we describe a new spectrometer design that offers unprecedented phase and amplitude accuracy for extended studies that involve multiple spectral acquisitions while modifying sample properties. The key to this significant improvement to the sensitivity of the technique is the combination of a full collinear beam geometry with broadband spectral sampling and the ability to simultaneously measure the complex sample and reference spectrum. We show that using this technique uncertainties in the reference phase and amplitude can be greatly reduced. Furthermore, we show that using balanced detection, the signal to noise ratio can be increased by one order of magnitude. The capabilities of the spectrometer are demonstrated by the isolation of a small isotropic surface signal from the bulk dominated nonlinear optical response of z-cut quartz. The achieved precision of our spectrometer enables measurements not currently feasible in v-SFG spectroscopy.

8.
Angew Chem Int Ed Engl ; 56(15): 4211-4214, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28300334

RESUMO

Quantitative description of reaction mechanisms in aqueous phase electrochemistry requires experimental characterization of local water structure at the electrode/aqueous interface and its evolution with changing potential. Gaining such insight experimentally under electrochemical conditions is a formidable task. The potential-dependent structure of a subpopulation of interfacial water with one OH group pointing towards a gold working electrode is characterized using interface specific vibrational spectroscopy in a thin film electrochemical cell. Such free-OH groups are the molecular level observable of an extended hydrophobic interface. This free-OH interacts only weakly with the Au surface at all potentials, has an orientational distribution that narrows approaching the potential of zero charge, and disappears on oxidation of the gold electrode.

9.
Phys Chem Chem Phys ; 18(27): 18424-30, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27339861

RESUMO

Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial water's libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm(-1), ≈165 cm(-1) higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of water's rotational potential, this increase suggests that one effect of terminating bulk water's hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.

10.
Phys Chem Chem Phys ; 18(22): 14822-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27109875

RESUMO

The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(11[combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1-4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm(-1). Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable.

11.
Proc Natl Acad Sci U S A ; 110(47): 18780-5, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191016

RESUMO

Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.


Assuntos
Ar , Hidróxidos/química , Modelos Químicos , Vibração , Água/química , Lasers , Análise Espectral/métodos , Tensão Superficial
12.
J Chem Phys ; 142(5): 054704, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662657

RESUMO

Oxide/water interfaces are ubiquitous in a wide variety of applications and the environment. Despite this ubiquity, and attendant decades of study, gaining molecular level insight into water/oxide interaction has proven challenging. In part, this challenge springs from a lack of tools to concurrently characterize changes in surface structure (i.e., water/oxide interaction from the perspective of the solid) and O-H population and local environment (i.e., water/oxide interaction from the water perspective). Here, we demonstrate the application of surface specific vibrational spectroscopy to the characterization of the interaction of the paradigmatic α-Al2O3(0001) surface and water. By probing both the interfacial Al-O (surface phonon) and O-H spectral response, we characterize this interaction from both perspectives. Through electronic structure calculation, we assign the interfacial Al-O response and rationalize its changes on surface dehydroxylation and reconstruction. Because our technique is all-optical and interface specific, it is equally applicable to oxide surfaces in vacuum, ambient atmospheres and at the solid/liquid interface. Application of this approach to additional alumina surfaces and other oxides thus seems likely to significantly expand our understanding of how water meets oxide surfaces and thus the wide variety of phenomena this interaction controls.

13.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842418

RESUMO

Experimental insight into the elementary processes underlying charge transfer across interfaces has blossomed with the wide-spread availability of ultra-high vacuum (UHV) setups that allow the preparation and characterization of solid surfaces with well-defined molecular adsorbates over a wide range of temperatures. Within the last 15 years, such insights have extended to charge transfer heterostructures containing solids overlain by one or more atomically thin two dimensional materials. Such systems are of wide potential interest both because they appear to offer a path to separate surface reactivity from bulk chemical properties and because some offer completely novel physics, unrealizable in bulk three dimensional solids. Thick layers of molecular adsorbates or heterostructures of 2D materials generally preclude the use of electrons or atoms as probes. However, with linear photon-in/photon-out techniques, it is often challenging to assign the observed optical response to a particular portion of the interface. We and prior workers have demonstrated that by full characterization of the symmetry of the second order nonlinear optical susceptibility, i.e., the χ(2), in sum frequency generation (SFG) spectroscopy, this problem can be overcome. Here, we describe an UHV system built to allow conventional UHV sample preparation and characterization, femtosecond and polarization resolved SFG spectroscopy, the azimuthal sample rotation necessary to fully describe χ(2) symmetry, and sufficient stability to allow scanning SFG microscopy. We demonstrate these capabilities in proof-of-principle measurements on CO adsorbed on Pt(111) and on the clean Ag(111) surface. Because this setup allows both full characterization of the nonlinear susceptibility and the temperature control and sample preparation/characterization of conventional UHV setups, we expect it to be of great utility in the investigation of both the basic physics and applications of solid, 2D material heterostructures.

14.
Phys Rev Lett ; 107(11): 116102, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026687

RESUMO

We report the real-time measurement of the ultrafast reorientational motion of water molecules at the water-air interface, using femtosecond time- and polarization-resolved vibrational sum-frequency spectroscopy. Vibrational excitation of dangling OH bonds along a specific polarization axis induces a transient anisotropy that decays due to the reorientation of vibrationally excited OH groups. The reorientation of interfacial water is shown to occur on subpicosecond time scales, several times faster than in the bulk, which can be attributed to the lower degree of hydrogen bond coordination at the interface. Molecular dynamics simulations of interfacial water dynamics are in quantitative agreement with experimental observations and show that, unlike in bulk, the interfacial reorientation occurs in a largely diffusive manner.


Assuntos
Ar , Radical Hidroxila/química , Análise Espectral/métodos , Vibração , Água/química , Ligação de Hidrogênio , Fatores de Tempo
15.
Nat Rev Chem ; 5(7): 466-485, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37118441

RESUMO

The ubiquity of aqueous solutions in contact with charged surfaces and the realization that the molecular-level details of water-surface interactions often determine interfacial functions and properties relevant in many natural processes have led to intensive research. Even so, many open questions remain regarding the molecular picture of the interfacial organization and preferential alignment of water molecules, as well as the structure of water molecules and ion distributions at different charged interfaces. While water, solutes and charge are present in each of these systems, the substrate can range from living tissues to metals. This diversity in substrates has led to different communities considering each of these types of aqueous interface. In this Review, by considering water in contact with metals, oxides and biomembranes, we show the essential similarity of these disparate systems. While in each case the classical mean-field theories can explain many macroscopic and mesoscopic observations, it soon becomes apparent that such theories fail to explain phenomena for which molecular properties are relevant, such as interfacial chemical conversion. We highlight the current knowledge and limitations in our understanding and end with a view towards future opportunities in the field.

16.
J Am Chem Soc ; 132(23): 8037-47, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20486664

RESUMO

Understanding the molecular mechanism of DNA/lipid interaction is critical in optimizing the use of lipid cofactors in gene therapy. Here, we address this question by employing label-free vibrational sum frequency (VSF) spectroscopy to study the interaction of DNA with lipid monolayers of the cationic lipids DPTAP(1,2-dipalmitoyl-3-trimethylammonium-propane) and diC14-amidine as well as the zwitterionic lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) in the presence and absence of calcium. Our approach has the advantage both of allowing us to explicitly probe intermolecular interactions and of providing insight into the structure of water and lipids around DNA at the lipid interface. We find, by examination of the OD stretch of interfacial D(2)O, that water structure differs markedly between systems containing DNA adsorbed to cationic and those that contain DNA adsorbed to zwitterionic lipid monolayers (in the presence or absence of Ca(2+)). The spectral response of interfacial water in the cationic system is consistent with a highly structured, undercoordinated, structural 'type' of water. Further, by investigation of CH stretch modes of the diC14-amidine lipid tails, we demonstrate that the adsorption of DNA to this lipid leads to increased ordering of lipid tails.


Assuntos
DNA/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Água/química , Água/metabolismo , DNA/química , Lasers , Conformação de Ácido Nucleico , Fenômenos Ópticos , Análise Espectral , Vibração
17.
J Am Chem Soc ; 132(42): 14971-8, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20882964

RESUMO

We report vibrational lifetime measurements of the OH stretch vibration of interfacial water in contact with lipid monolayers, using time-resolved vibrational sum frequency (VSF) spectroscopy. The dynamics of water in contact with four different lipids are reported and are characterized by vibrational relaxation rates measured at 3200, 3300, 3400, and 3500 cm(-1). We observe that the water molecules with an OH frequency ranging from 3300 to 3500 cm(-1) all show vibrational relaxation with a time constant of T(1) = 180 ± 35 fs, similar to what is found for bulk water. Water molecules with OH groups near 3200 cm(-1) show distinctly faster relaxation dynamics, with T(1) < 80 fs. We successfully model the data by describing the interfacial water containing two distinct subensembles in which spectral diffusion is, respectively, rapid (3300-3500 cm(-1)) and absent (3200 cm(-1)). We discuss the potential biological implications of the presence of the strongly hydrogen-bonded, rapidly relaxing water molecules at 3200 cm(-1) that are decoupled from the bulk water system.


Assuntos
Lipídeos/química , Análise Espectral/métodos , Vibração
18.
J Phys Chem C Nanomater Interfaces ; 124(37): 20021-20034, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693431

RESUMO

Designing efficient catalysts requires correlating surface structure and local chemical composition with reactivity on length scales from nanometers to tens of microns. While much work has been done on this structure/function correlation on single crystals, comparatively little has been done for catalysts of relevance in applications. Such materials are typically highly heterogeneous and thus require methods that allow mapping of the structure/function relationship during electrochemical conversion. Here, we use optical second harmonic imaging combined with cyclic voltammetry to map the surface of gold nanocrystalline and polycrystalline electrodes during electrooxidation and to quantify the spatial extent of surface reconstruction during potential cycling. The wide-field configuration of our microscope allows for real-time imaging of an area ∼100 µm in diameter with submicron resolution. By analyzing the voltage dependence of each pixel, we uncover the heterogeneity of the second harmonic signal and quantify the fraction of domains where it follows a positive quadratic dependence with increasing bias. There, the second harmonic intensity is mainly ascribed to electronic polarization contributions at the metal/electrolyte interface. Additionally, we locate areas where the second harmonic signal follows a negative quadratic dependence with increasing bias, which also show the largest changes during successive cyclic voltammetry sweeps as determined by an additional correlation coefficient analysis. We assign these areas to domains of higher roughness that are prone to potential-induced surface restructuring and where anion adsorption occurs at lower potentials than expected based on the cyclic voltammetry.

19.
ACS Catal ; 10(11): 6084-6093, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32551180

RESUMO

Understanding the mechanism of the oxygen evolution reaction (OER), the oxidative half of electrolytic water splitting, has proven challenging. Perhaps the largest hurdle has been gaining experimental insight into the active site of the electrocatalyst used to facilitate this chemistry. Decades of study have clarified that a range of transition-metal oxides have particularly high catalytic activity for the OER. Unfortunately, for virtually all of these materials, metal oxidation and the OER occur at similar potentials. As a result, catalyst surface topography and electronic structure are expected to continuously evolve under reactive conditions. Gaining experimental insight into the OER mechanism on such materials thus requires a tool that allows spatially resolved characterization of the OER activity. In this study, we overcome this formidable experimental challenge using second harmonic microscopy and electrochemical methods to characterize the spatial heterogeneity of OER activity on polycrystalline Au working electrodes. At moderately anodic potentials, we find that the OER activity of the electrode is dominated by <1% of the surface area and that there are two types of active sites. The first is observed at potentials positive of the OER onset and is stable under potential cycling (and thus presumably extends multiple layers into the bulk gold electrode). The second occurs at potentials negative of the OER onset and is removed by potential cycling (suggesting that it involves a structural motif only 1-2 Au layers deep). This type of active site is most easily understood as the catalytically active species (hydrous oxide) in the so-called incipient hydrous oxide/adatom mediator model of electrocatalysis. Combining the ability we demonstrate here to characterize the spatial heterogeneity of OER activity with a systematic program of electrode surface structural modification offers the possibility of creating a generation of OER electrocatalysts with unusually high activity.

20.
J Phys Chem Lett ; 9(6): 1279-1283, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29474081

RESUMO

The dielectric response of liquids in the terahertz (THz) and sub-THz frequency range arises from low-energy collective molecular motions, which are often strongly influenced by intermolecular interactions. To shed light on the microscopic origin of the THz dielectric response of the simplest alcohol, methanol, we resonantly excite this liquid with an intense THz electric-field pulse and monitor the relaxation of the induced optical birefringence. We find a unipolar THz-Kerr-effect signal which, in contrast to aprotic polar liquids, shows a weak coupling between the THz electric field and the permanent molecular dipole moment of the liquid. We assign this weak coupling to the restricted translational rather than rotational nature of the excited mode. Our approach opens a new avenue to the assignment of the dielectric spectrum of liquids to a microscopic origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA