Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531096

RESUMO

The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.


Assuntos
Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Cisteína Endopeptidases/química , Precursores Enzimáticos/química , Sequência de Aminoácidos , Antígenos de Dermatophagoides/genética , Proteínas de Artrópodes/genética , Cisteína Endopeptidases/genética , Dipeptídeos/química , Precursores Enzimáticos/genética , Concentração de Íons de Hidrogênio , Cinética , Mutação , Conformação Proteica , Desdobramento de Proteína , Proteólise , Tirosina/química
2.
Front Immunol ; 5: 138, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744761

RESUMO

In more than 20% of the world population, sensitization to house dust mite allergens triggers typical allergic diseases such as allergic rhinitis and asthma. Amongst the 23 mite allergen groups hitherto identified, group 1 is cysteine proteases belonging to the papain-like family whereas groups 3, 6, and 9 are serine proteases displaying trypsin, chymotrypsin, and collagenolytic activities, respectively. While these proteases are more likely to be involved in the mite digestive system, they also play critical roles in the initiation and in the chronicity of the allergic response notably through the activation of innate immune pathways. All these allergenic proteases are expressed in mite as inactive precursor form. Until recently, the exact mechanisms of their maturation into active proteases remained to be fully elucidated. Recent breakthroughs in the understanding of the activation mechanisms of mite allergenic protease precursors have highlighted an uncommon and unique maturation pathway orchestrated by group 1 proteases that tightly regulates the proteolytic activities of groups 1, 3, 6, and 9 through complex intra- or inter-molecular mechanisms. This review presents and discusses the currently available knowledge of the activation mechanisms of group 1, 3, 6, and 9 allergens of Dermatophagoides pteronyssinus laying special emphasis on their localization, regulation, and interconnection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA