Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Environ Manage ; 348: 119220, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866183

RESUMO

Edge-of-field management practices that reduce nutrient pollution from tile drainage while contributing habitat and other ecosystem services are needed to enhance agricultural systems in the US Corn Belt Region. In this review, we identified edge-of-field and catchment scale agricultural conservation practices for intercepting and treating tile drainage. The reviewed conservation practices were (1) controlled drainage, also known as drainage water management (USDA-NRCS Code 554); (2) drainage water recycling (USDA-NRCS Code 447); (3) denitrifying bioreactors (USDA-NRCS Code 605); (4) saturated buffers (USDA-NRCS Code 604); and (5) constructed or restored wetlands designed for water quality improvement (USDA-NRCS Code 656) herein referred to as water quality wetlands. We examined 119 studies that had information on one or more of the following ecosystem services: water retention, water quality improvement (e.g., nitrate, phosphate, sediment, or pesticide retention), wetland habitat (for birds, aquatic organisms, and pollinators), crop yield improvement, and other benefits (e.g., recreation, education, aesthetic appreciation, greenhouse gas retention). We found the five edge-of-field practices were all effective at removing nitrate with varying degrees of other potential benefits and disservices (e.g., greenhouse gas production). Drainage water recycling and water quality wetlands have the potential to provide the most co-benefits as they provide surface water systems for capturing surface flows in addition to tile drainage while also potentially providing habitat and recreation opportunities. However, the following research needs are identified: 1) the disservices and benefits associated with drainage water recycling have not been adequately evaluated; 2) surface flow dynamics are understudied across all reviewed management practices; 3) a complete accounting of phosphorus species and flow pathways for all management practices is needed; 4) field evaluations of the habitat benefit of all management practices are needed; and 5) greenhouse gas dynamics are understudied across all management practices. While all management practices are expected to reduce nitrate loads, addressing these knowledge gaps will help inform holistic management decisions for diverse stakeholders across the US Corn Belt.


Assuntos
Ecossistema , Gases de Efeito Estufa , Estados Unidos , Zea mays , Nitratos/análise , Agricultura
2.
J Am Water Resour Assoc ; 55(2): 497-510, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32704230

RESUMO

A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models - Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport - to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT-HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.

3.
Sci Total Environ ; 838(Pt 4): 156358, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654186

RESUMO

Given widespread biodiversity declines, a growing global human population, and demands to improve water quality, there is an immediate need to explore land management solutions that support multiple ecosystem services. Agricultural water quality wetlands designed to provide both water quality benefits and wetland and grassland habitat are an emerging restoration solution that may reverse habitat declines in intensive agricultural areas. Installation of water quality wetlands in the Upper Midwest, USA, when considered alongside the repair and modification of aging agricultural tile drainage infrastructure, is a likely scenario that may mitigate nutrient pollution exported from agricultural systems and improve crop yields. The capacity of water quality wetlands to provide habitat within the wetland pool and the surrounding grassland is not well-studied, particularly with respect to potential habitat changes resulting from drainage infrastructure upgrades. For the current study, we produced spatially explicit models of 37 catchments distributed throughout an important region for agriculture and biodiversity, the Des Moines Lobe of Iowa. Four scenarios were considered - with and without improved drainage and with and without water quality wetlands - to estimate the net potential habitat implications of these scenarios for amphibians, grassland birds, and wild bees. Model results indicate that drainage modification alone will likely result in moderate direct losses of suitable amphibian habitat and large declines in overall habitat quality. However, inclusion of water quality wetlands at the catchment scale may mitigate these amphibian habitat losses while also increasing grassland bird and pollinator habitat. The impacts of water quality wetlands and drainage modernization on waterfowl in the region require additional study.


Assuntos
Ecossistema , Áreas Alagadas , Agricultura , Animais , Abelhas , Biodiversidade , Aves , Conservação dos Recursos Naturais , Qualidade da Água
4.
Integr Environ Assess Manag ; 15(3): 320-344, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30609273

RESUMO

High-profile reports of detrimental scientific practices leading to retractions in the scientific literature contribute to lack of trust in scientific experts. Although the bulk of these have been in the literature of other disciplines, environmental toxicology and chemistry are not free from problems. While we believe that egregious misconduct such as fraud, fabrication of data, or plagiarism is rare, scientific integrity is much broader than the absence of misconduct. We are more concerned with more commonly encountered and nuanced issues such as poor reliability and bias. We review a range of topics including conflicts of interests, competing interests, some particularly challenging situations, reproducibility, bias, and other attributes of ecotoxicological studies that enhance or detract from scientific credibility. Our vision of scientific integrity encourages a self-correcting culture that promotes scientific rigor, relevant reproducible research, transparency in competing interests, methods and results, and education. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Conflito de Interesses , Ecotoxicologia/ética , Plágio , Má Conduta Científica/ética , Reprodutibilidade dos Testes
5.
J Environ Qual ; 36(4): 1172-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17596626

RESUMO

Riparian buffers, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and reducing nitrogen loads entering water bodies. Riparian buffer width is thought to be positively related to nitrogen removal effectiveness by influencing nitrogen retention or removal. We surveyed the scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater to identify trends between nitrogen removal effectiveness and buffer width, hydrological flow path, and vegetative cover. Nitrogen removal effectiveness varied widely. Wide buffers (>50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m). Buffers of various vegetation types were equally effective at removing nitrogen but buffers composed of herbaceous and forest/herbaceous vegetation were more effective when wider. Subsurface removal of nitrogen was efficient, but did not appear to be related to buffer width, while surface removal of nitrogen was partly related to buffer width. The mass of nitrate nitrogen removed per unit length of buffer did not differ by buffer width, flow path, or buffer vegetation type. Our meta-analysis suggests that buffer width is an important consideration in managing nitrogen in watersheds. However, the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology (e.g., soil saturation, groundwater flow paths), and subsurface biogeochemistry (organic carbon supply, nitrate inputs) also are important factors governing nitrogen removal in buffers.


Assuntos
Ecossistema , Nitrogênio/análise , Rios , Poluição da Água/prevenção & controle , Nitratos/análise , Água/análise
6.
Integr Environ Assess Manag ; 13(1): 52-61, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27541951

RESUMO

Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into EPFs of added ecological complexity and greater ability to represent the trade-offs among ES. Integr Environ Assess Manag 2017;13:52-61. © 2016 SETAC.


Assuntos
Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais , Tomada de Decisões , Ecossistema , Modelos Teóricos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA