Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(7): 867-881, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36884028

RESUMO

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Neuroblastoma , Disfunção Ventricular Esquerda , Ratos , Camundongos , Humanos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Endoteliais/metabolismo , Neuroblastoma/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Receptores Adrenérgicos beta/metabolismo
2.
Lipids Health Dis ; 23(1): 4, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185682

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) has a bidirectional association with metabolic syndrome, and insulin resistance (IR). The triglyceride-glucose (TyG) index could be a simply calculated marker of IR in OSA. However, its clinical application appears still limited. Hence, this systematic review and meta-analysis aimed to respond to this question by analyzing all the existing studies showing an association between OSA and the TyG index. METHODS: Four online databases, including PubMed, Scopus, the Web of Science, and Embase were searched for studies evaluating the TyG index in OSA. After screening and data extraction, a random-effect meta-analysis was performed to compare the TyG index in OSA patients vs. healthy controls by calculating standardized mean difference (SMD) and 95% confidence interval (CI) and pooling the area under the curves (AUCs) for diagnosis of OSA based on this index. RESULTS: Ten studies involving 16,726 individuals were included in the current systematic review. Meta-analysis indicated that there was a significantly higher TyG index in patients with OSA, compared with the healthy controls (SMD 0.856, 95% CI 0.579 to 1.132, P < 0.001). Also, TyG had a diagnostic ability for OSA representing a pooled AUC of 0.681 (95% CI 0.627 to 0.735). However, based on the two studies' findings, no difference between different severities of OSA was observed. Finally, our data showed that the TyG index is a good potential predictor of adverse outcomes in these patients. CONCLUSION: Our study revealed that the TyG index is an easy-to-measure marker of IR for assessing OSA, both in diagnosis and prognosis. Our study supports its implementation in routine practice to help clinicians in decision-making and patient stratification.


Assuntos
Resistência à Insulina , Apneia Obstrutiva do Sono , Humanos , Área Sob a Curva , Bases de Dados Factuais , Glucose , Apneia Obstrutiva do Sono/diagnóstico , Triglicerídeos
3.
Cardiovasc Diabetol ; 22(1): 244, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679763

RESUMO

BACKGROUND: Insulin resistance (IR) is a major metabolic disorder observed in heart failure (HF) and is tightly associated with patients' poor prognosis. The triglyceride-glucose index (TyG) has been proposed as a surrogate marker of IR in HF. Yet, whether TyG is a reliable clinical marker is still under debate. Hence, we aimed to respond to this relevant question via a systematic review and meta-analysis of existing studies. METHODS: A systematic search was conducted in PubMed, Embase, Scopus, and Web of Science to find studies investigating the TyG index in patients with HF or its association with the incidence of HF. Adjusted hazard ratios (HR) and 95% confidence intervals (CI) were pooled through random-effect meta-analysis. HRs were calculated using TyG as a continuous variable (1 unit increase) and by comparing the group with the highest TyG to the lowest TyG group. RESULTS: Thirty studies, involving 772,809 participants, were included in this systematic review. Meta-analysis of seven studies comparing the highest-TyG to the lowest-TyG group showed a significantly increased risk of HF in the former group (HR 1.21, 95% CI 1.14 to 1.29, P < 0.01). The same result was found when pooling the HRs for a one-unit increase in the TyG index (HR 1.17, 95% CI 1.08 to 1.26). Similarly, a more elevated TyG index was associated with a higher incidence of HF in patients with type 2 diabetes or coronary artery disease. Additionally, the incidence of adverse events (readmission and mortality) in patients with HF was associated with TyG. CONCLUSION: Our findings support the TyG index as a valuable marker to assess the risk of HF incidence in different populations and as a prognostic marker in patients with HF. Further studies should be conducted to confirm these associations and investigate the clinical utility of the TyG index.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Glucose , Triglicerídeos
4.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569882

RESUMO

The Special Issue entitled "Molecular Mechanisms Underlying Chronic and Degenerative Diseases" contains eight articles: six original studies and two reviews [...].

5.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569440

RESUMO

Estrogen deficiency is a major cause of loss of postmenopausal bone mineral density (BMD). This study aimed to evaluate the effects of equol and resveratrol on bone turnover biomarkers in postmenopausal women. Sixty healthy postmenopausal women were randomly assigned to receive 200 mg fermented soy containing 10 mg equol and 25 mg resveratrol or a placebo for 12 months. Whole-body BMD and bone turnover biomarkers, such as deoxypyridinoline (DPD), tartrate-resistant acid phosphatase 5b (TRACP-5b), osteocalcin, and bone-specific alkaline phosphatase (BAP), were measured at baseline and after 12 months of treatment. At the end of treatment, DPD, osteocalcin, and BAP significantly improved in the active group (p < 0.0001 for all) compared to the placebo group. Conversely, TRACP-5b levels were unaffected by supplementation (p = 0.051). Statistically significant changes in the concentrations of DPD (p < 0.0001), osteocalcin (p = 0.0001), and BAP (p < 0.0001) compared to baseline were also identified. Overall, the intervention significantly increased BMD measured in the whole body (p = 0.0220) compared with the placebo. These data indicate that the combination of equol and resveratrol may positively modulate bone turnover biomarkers and BMD, representing a potential approach to prevent age-related bone loss in postmenopausal women.


Assuntos
Osteoporose Pós-Menopausa , Pós-Menopausa , Humanos , Feminino , Equol/farmacologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Fosfatase Ácida Resistente a Tartarato , Osteocalcina , Densidade Óssea , Fosfatase Alcalina/uso terapêutico , Biomarcadores , Remodelação Óssea , Osteoporose Pós-Menopausa/tratamento farmacológico
6.
Basic Res Cardiol ; 117(1): 62, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445563

RESUMO

Aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (ß3AR) signaling is beneficial in several forms of HF. Here, we studied the potential beneficial effect of ß3AR overexpression on AS-induced HF. Selective ß3AR stimulation had a positive inotropic effect. Transgenic mice constitutively overexpressing human ß3AR in the heart (c-hß3tg) were protected from the development of HF in response to induced AS, and against cardiomyocyte mitochondrial dysfunction (fragmented mitochondria with remodeled cristae and metabolic reprogramming featuring altered substrate use). Similar beneficial effects were observed in wild-type mice inoculated with adeno-associated virus (AAV9) inducing cardiac-specific overexpression of human ß3AR before AS induction. Moreover, AAV9-hß3AR injection into wild-type mice at late disease stages, when cardiac hypertrophy and metabolic reprogramming are already advanced, reversed the HF phenotype and restored balanced mitochondrial dynamics, demonstrating the potential of gene-therapy-mediated ß3AR overexpression in AS. Mice with cardiac specific ablation of Yme1l (cYKO), characterized by fragmented mitochondria, showed an increased mortality upon AS challenge. AAV9-hß3AR injection in these mice before AS induction reverted the fragmented mitochondria phenotype and rescued them from death. In conclusion, our results step out that ß3AR overexpression might have translational potential as a therapeutic strategy in AS-induced HF.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Receptores Adrenérgicos beta 3 , Dinâmica Mitocondrial , Hipertrofia Ventricular Esquerda , Miócitos Cardíacos , Camundongos Transgênicos , Metaloendopeptidases
7.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628313

RESUMO

Over the past three decades, after Nobel prizes, Robert Lefkowitz and Brian Kobilka characterized G protein-coupled receptors (GPCRs) structure [...].


Assuntos
Prêmio Nobel , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química
8.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499478

RESUMO

The second volume of this Special Issue, entitled "G Protein-Coupled Receptor and Their Kinases in Cell Biology and Disease 2 [...].


Assuntos
Quinases de Receptores Acoplados a Proteína G , Receptores Acoplados a Proteínas G , Proteínas Serina-Treonina Quinases , Proteínas Quinases Dependentes de AMP Cíclico , Receptores Proteína Tirosina Quinases
9.
Int J Mol Sci ; 23(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35409368

RESUMO

The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.


Assuntos
Doenças Cardiovasculares , Animais , Doenças Cardiovasculares/etiologia , Ceramidas/metabolismo , Estrogênios/uso terapêutico , Feminino , Humanos , Lisofosfolipídeos , Masculino , Mamíferos/metabolismo , Caracteres Sexuais , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671974

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors and they are responsible for the transduction of extracellular signals, regulating almost all aspects of mammalian physiology. These receptors are specifically regulated by a family of serine/threonine kinases, called GPCR kinases (GRKs). Given the biological role of GPCRs, it is not surprising that GRKs are also involved in several pathophysiological processes. Particular importance is emerging for GRK5, which is a multifunctional protein, expressed in different cell types, and it has been found located in single or multiple subcellular compartments. For instance, when anchored to the plasma membrane, GRK5 exerts its canonical function, regulating GPCRs. However, under certain conditions (e.g., pro-hypertrophic stimuli), GRK5 translocates to the nucleus of cells where it can interact with non-GPCR-related proteins as well as DNA itself to promote "non-canonical" signaling, including gene transcription. Importantly, due to these actions, several studies have demonstrated that GRK5 has a pivotal role in the pathogenesis of chronic-degenerative disorders. This is true in the cardiac cells, tumor cells, and neurons. For this reason, in this review article, we will inform the readers of the most recent evidence that supports the importance of targeting GRK5 to prevent the development or progression of cancer, cardiovascular, and neurological diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Animais , Quinase 5 de Receptor Acoplado a Proteína G/química , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
11.
Aging Clin Exp Res ; 31(3): 321-330, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29858985

RESUMO

Diabetes mellitus (DM) and heart failure (HF) are frequent comorbidities among elderly patients. HF, a leading cause of mortality and morbidity worldwide, is characterized by sympathetic nervous system hyperactivity. The prevalence of diabetes mellitus (DM) is rapidly growing and the risk of developing HF is higher among DM patients. DM is responsible for several macro- and micro-angiopathies that contribute to the development of coronary artery disease (CAD), peripheral artery disease, retinopathy, neuropathy and diabetic nephropathy (DN) as well. Independently of CAD, chronic kidney disease (CKD) and DM increase the risk of HF. Individuals with diabetic nephropathy are likely to present a distinct pathological condition, defined as diabetic cardiomyopathy, even in the absence of hypertension or CAD, whose pathogenesis is only partially known. However, several hypotheses have been proposed to explain the mechanism of diabetic cardiomyopathy: increased oxidative stress, altered substrate metabolism, mitochondrial dysfunction, activation of renin-angiotensin-aldosterone system (RAAS), insulin resistance, and autonomic dysfunction. In this review, we will focus on the involvement of sympathetic system hyperactivity in the diabetic nephropathy.


Assuntos
Cardiomiopatias Diabéticas/etiologia , Nefropatias Diabéticas/complicações , Insuficiência Cardíaca/etiologia , Sistema Nervoso Simpático/fisiopatologia , Humanos
12.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897827

RESUMO

Periodontitis is a chronic inflammatory disease, initiated by the presence of a bacterial biofilm, called dental plaque, which affects both the periodontal ligaments and bone surrounding teeth. In the last decades, several lines of evidence have supported the existence of a relationship between periodontitis and systemic health. For instance, as periodontitis acts within the same chronic inflammatory model seen in cardiovascular disease (CVD), or other disorders, such as diabetes, several studies have suggested the existence of a bi-directional link between periodontal health and these pathologies. For instance, people with diabetes are more susceptible to infections and are more likely to suffer from periodontitis than people without this syndrome. Analogously, it is now evident that cardiac disorders are worsened by periodontitis, both experimentally and in humans. For all these reasons, it is very plausible that preventing periodontitis has an impact on the onset or progression of CVD and diabetes. On these grounds, in this review, we have provided an updated account on the current knowledge concerning periodontal disease and the adverse effects exerted on the cardiovascular system health and diabetes, informing readers on the most recent preclinical studies and epidemiological evidence.


Assuntos
Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Inflamação/metabolismo , Doenças Periodontais/metabolismo , Animais , Doenças Cardiovasculares/imunologia , Diabetes Mellitus/imunologia , Humanos , Inflamação/imunologia , Doenças Periodontais/imunologia , Fatores de Risco
13.
Circ Res ; 118(8): 1244-53, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26926470

RESUMO

RATIONALE: It has been reported that epicardial adipose tissue (EAT) may affect myocardial autonomic function. OBJECTIVE: The aim of this study was to explore the relationship between EAT and cardiac sympathetic nerve activity in patients with heart failure. METHODS AND RESULTS: In 110 patients with systolic heart failure, we evaluated the correlation between echocardiographic EAT thickness and cardiac adrenergic nerve activity assessed by (123)I-metaiodobenzylguanidine ((123)I-MIBG). The predictive value of EAT thickness on cardiac sympathetic denervation ((123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score) was tested in a multivariate analysis. Furthermore, catecholamine levels, catecholamine biosynthetic enzymes, and sympathetic nerve fibers were measured in EAT and subcutaneous adipose tissue biopsies obtained from patients with heart failure who underwent cardiac surgery. EAT thickness correlated with (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score, but not with left ventricular ejection fraction. Moreover, EAT resulted as an independent predictor of (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score and showed a significant additive predictive value on (123)I-MIBG planar and single-photon emission computed tomography results over demographic and clinical data. Although no differences were found in sympathetic innervation between EAT and subcutaneous adipose tissue, EAT showed an enhanced adrenergic activity demonstrated by the increased catecholamine levels and expression of catecholamine biosynthetic enzymes. CONCLUSIONS: This study provides the first evidence of a direct correlation between increased EAT thickness and cardiac sympathetic denervation in heart failure.


Assuntos
Tecido Adiposo/inervação , Fibras Adrenérgicas/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Pericárdio/inervação , Tecido Adiposo/diagnóstico por imagem , Idoso , Tomografia Computadorizada por Emissão de Fóton Único de Sincronização Cardíaca/métodos , Ecocardiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Pericárdio/diagnóstico por imagem
14.
Circ Res ; 118(7): 1116-24, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884616

RESUMO

RATIONALE: Sympathetic nervous system hyperactivity is associated with poor prognosis in patients with heart failure (HF), yet routine assessment of sympathetic nervous system activation is not recommended for clinical practice. Myocardial G protein-coupled receptor kinase-2 (GRK2) is upregulated in HF patients, causing dysfunctional ß-adrenergic receptor signaling. Importantly, myocardial GRK2 levels correlate with levels found in peripheral lymphocytes of HF patients. OBJECTIVE: The independent prognostic value of blood GRK2 measurements in HF patients has never been investigated; thus, the purpose of this study was to evaluate whether lymphocyte GRK2 levels predict clinical outcome in HF patients. METHODS AND RESULTS: We prospectively studied 257 HF patients with mean left ventricular ejection fraction of 31.4±8.5%. At the time of enrollment, plasma norepinephrine, serum NT-proBNP, and lymphocyte GRK2 levels, as well as clinical and instrumental variables were measured. The prognostic value of GRK2 to predict cardiovascular (CV) death and all-cause mortality was assessed using the Cox proportional hazard model including demographic, clinical, instrumental, and laboratory data. Over a mean follow-up period of 37.5±20.2 months (range, 3-60 months), there were 102 CV deaths. Age, left ventricular ejection fraction, New York Heart Association class, chronic obstructive pulmonary disease, chronic kidney disease, N-terminal-pro brain natriuretic peptide, and lymphocyte GRK2 protein levels were independent predictors of CV mortality in HF patients. GRK2 levels showed an additional prognostic and clinical value over demographic and clinical variables. The independent prognostic value of lymphocyte GRK2 levels was also confirmed for all-cause mortality. CONCLUSIONS: Lymphocyte GRK2 protein levels can independently predict prognosis in patients with HF.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/sangue , Insuficiência Cardíaca/sangue , Linfócitos/enzimologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Doenças Cardiovasculares/mortalidade , Causas de Morte , Feminino , Seguimentos , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Mortalidade , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Volume Sistólico , Sistema Nervoso Simpático/fisiopatologia , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
15.
Mol Pharmacol ; 92(6): 707-717, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29070696

RESUMO

G protein-coupled receptor kinases (GRKs) phosphorylate activated receptors to promote arrestin binding, decoupling from heterotrimeric G proteins, and internalization. GRK2 and GRK5 are overexpressed in the failing heart and thus have become therapeutic targets. Previously, we discovered two classes of GRK2-selective inhibitors, one stemming from GSK180736A, a Rho-associated coiled-coil containing kinase 1 (ROCK1) inhibitor, the other from paroxetine, a selective serotonin-reuptake inhibitor. These two classes of compounds bind to the GRK2 active site in a similar configuration but contain different hinge-binding "warheads": indazole and benzodioxole, respectively. We surmised from our prior studies that an indazole would be the stronger hinge binder and would impart increased potency when substituted for benzodioxole in paroxetine derivatives. To test this hypothesis, we synthesized a series of hybrid compounds that allowed us to compare the effects of inhibitors that differ only in the identity of the warhead. The indazole-paroxetine analogs were indeed more potent than their respective benzodioxole derivatives but lost selectivity. To investigate how these two warheads dictate selectivity, we determined the crystal structures of three of the indazole hybrid compounds (CCG224061, CCG257284, and CCG258748) in complex with GRK2-Gßγ Comparison of these structures with those of analogous benzodioxole-containing complexes confirmed that the indazole-paroxetine hybrids form stronger interactions with the hinge of the kinase but also stabilize a distinct conformation of the kinase domain of GRK2 compared with previous complexes with paroxetine analogs. This conformation is analogous to one that can be assumed by GRK5, at least partially explaining the loss in selectivity.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/farmacologia , Indazóis/farmacologia , Paroxetina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Quinase 2 de Receptor Acoplado a Proteína G/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Inibidores Seletivos de Recaptação de Serotonina , Quinases Associadas a rho/metabolismo
16.
Circ Res ; 117(12): 1001-12, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26515328

RESUMO

RATIONALE: G protein-coupled receptor kinases (GRKs) are dynamic regulators of cellular signaling. GRK5 is highly expressed within myocardium and is upregulated in heart failure. Although GRK5 is a critical regulator of cardiac G protein-coupled receptor signaling, recent data has uncovered noncanonical activity of GRK5 within nuclei that plays a key role in pathological hypertrophy. Targeted cardiac elevation of GRK5 in mice leads to exaggerated hypertrophy and early heart failure after transverse aortic constriction (TAC) because of GRK5 nuclear accumulation. OBJECTIVE: In this study, we investigated the role of GRK5 in physiological, swimming-induced hypertrophy (SIH). METHODS AND RESULTS: Cardiac-specific GRK5 transgenic mice and nontransgenic littermate control mice were subjected to a 21-day high-intensity swim protocol (or no swim sham controls). SIH and specific molecular and genetic indices of physiological hypertrophy were assessed, including nuclear localization of GRK5, and compared with TAC. Unlike after TAC, swim-trained transgenic GRK5 and nontransgenic littermate control mice exhibited similar increases in cardiac growth. Mechanistically, SIH did not lead to GRK5 nuclear accumulation, which was confirmed in vitro as insulin-like growth factor-1, a known mediator of physiological hypertrophy, was unable to induce GRK5 nuclear translocation in myocytes. We found specific patterns of altered gene expression between TAC and SIH with GRK5 overexpression. Further, SIH in post-TAC transgenic GRK5 mice was able to preserve cardiac function. CONCLUSIONS: These data suggest that although nuclear-localized GRK5 is a pathological mediator after stress, this noncanonical nuclear activity of GRK5 is not induced during physiological hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Quinase 5 de Receptor Acoplado a Proteína G/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Células Cultivadas , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Ratos
17.
J Cardiovasc Pharmacol ; 69(2): 71-78, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28170359

RESUMO

Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by ß-adrenergic receptor (ßAR) dysregulation that is primarily due to the upregulation of G protein-coupled receptor kinases that leads to overdesensitization of ß1 and ß2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the "minor" ßAR isoform, the ß3AR, found in the heart, lacks G protein-coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that ß3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of ß-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of ß3AR activity. In this regard, targeting of ß3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Antagonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Cardiopatias/tratamento farmacológico , Agonistas de Receptores Adrenérgicos beta 3/metabolismo , Antagonistas de Receptores Adrenérgicos beta 3/metabolismo , Animais , Coração , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo
18.
J Biol Chem ; 290(34): 20649-20659, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26032411

RESUMO

G protein-coupled receptor kinases (GRKs) regulate cell signaling by initiating the desensitization of active G protein-coupled receptors. The two most widely expressed GRKs (GRK2 and GRK5) play a role in cardiovascular disease and thus represent important targets for the development of novel therapeutic drugs. In the course of a GRK2 structure-based drug design campaign, one inhibitor (CCG215022) exhibited nanomolar IC50 values against both GRK2 and GRK5 and good selectivity against other closely related kinases such as GRK1 and PKA. Treatment of murine cardiomyocytes with CCG215022 resulted in significantly increased contractility at 20-fold lower concentrations than paroxetine, an inhibitor with more modest selectivity for GRK2. A 2.4 Å crystal structure of the GRK5·CCG215022 complex was determined and revealed that the inhibitor binds in the active site similarly to its parent compound GSK180736A. As designed, its 2-pyridylmethyl amide side chain occupies the hydrophobic subsite of the active site where it forms three additional hydrogen bonds, including one with the catalytic lysine. The overall conformation of the GRK5 kinase domain is similar to that of a previously determined structure of GRK6 in what is proposed to be its active state, but the C-terminal region of the enzyme adopts a distinct conformation. The kinetic properties of site-directed mutants in this region are consistent with the hypothesis that this novel C-terminal structure is representative of the membrane-bound conformation of the enzyme.


Assuntos
Fármacos Cardiovasculares/química , Inibidores Enzimáticos/química , Quinase 5 de Receptor Acoplado a Proteína G/química , Miócitos Cardíacos/efeitos dos fármacos , Piridinas/química , Animais , Fármacos Cardiovasculares/síntese química , Fármacos Cardiovasculares/farmacologia , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/isolamento & purificação , Expressão Gênica , Septos Cardíacos/química , Septos Cardíacos/citologia , Septos Cardíacos/efeitos dos fármacos , Septos Cardíacos/enzimologia , Ventrículos do Coração/química , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Paroxetina/química , Paroxetina/farmacologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Piridinas/síntese química , Piridinas/farmacologia , Alinhamento de Sequência
19.
J Pharmacol Exp Ther ; 356(2): 503-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26604244

RESUMO

After hindlimb ischemia (HI), increased catecholamine levels within the ischemic muscle can cause dysregulation of ß2-adrenergic receptor (ß2AR) signaling, leading to reduced revascularization. Indeed, in vivo ß2AR overexpression via gene therapy enhances angiogenesis in a rat model of HI. G protein-coupled receptor kinase 2 (GRK2) is a key regulator of ßAR signaling, and ß adrenergic receptor kinase C-terminal peptide (ßARKct), a peptide inhibitor of GRK2, has been shown to prevent ßAR down-regulation and to protect cardiac myocytes and stem cells from ischemic injury through restoration of ß2AR protective signaling (i.e., protein kinase B/endothelial nitric oxide synthase). Herein, we tested the potential therapeutic effects of adenoviral-mediated ßARKct gene transfer in an experimental model of HI and its effects on ßAR signaling and on endothelial cell (EC) function in vitro. Accordingly, in this study, we surgically induced HI in rats by femoral artery resection (FAR). Fifteen days of ischemia resulted in significant ßAR down-regulation that was paralleled by an approximately 2-fold increase in GRK2 levels in the ischemic muscle. Importantly, in vivo gene transfer of the ßARKct in the hindlimb of rats at the time of FAR resulted in a marked improvement of hindlimb perfusion, with increased capillary and ßAR density in the ischemic muscle, compared with control groups. The effect of ßARKct expression was also assessed in vitro in cultured ECs. Interestingly, ECs expressing the ßARKct fenoterol, a ß2AR-agonist, induced enhanced ß2AR proangiogenic signaling and increased EC function. Our results suggest that ßARKct gene therapy and subsequent GRK2 inhibition promotes angiogenesis in a model of HI by preventing ischemia-induced ß2AR down-regulation.


Assuntos
Terapia Genética/tendências , Membro Posterior/irrigação sanguínea , Isquemia/genética , Neovascularização Patológica/genética , Receptores Adrenérgicos beta 2/genética , Quinases de Receptores Adrenérgicos beta/genética , Animais , Bovinos , Células Cultivadas , Isquemia/terapia , Masculino , Neovascularização Patológica/terapia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 2/metabolismo , Quinases de Receptores Adrenérgicos beta/administração & dosagem
20.
Eur J Nucl Med Mol Imaging ; 43(13): 2392-2400, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27287990

RESUMO

PURPOSE: Sympathetic nervous system (SNS) hyperactivity is a salient characteristic of chronic heart failure (HF) and contributes to the progression of the disease. Iodine-123 meta-iodobenzylguanidine (123I-mIBG) imaging has been successfully used to assess cardiac SNS activity in HF patients and to predict prognosis. Importantly, SNS hyperactivity characterizes also physiological ageing, and there is conflicting evidence on cardiac 123I-mIBG uptake in healthy elderly subjects compared to adults. However, little data are available on the impact of ageing on cardiac sympathetic nerve activity assessed by 123I-mIBG scintigraphy, in patients with HF. METHODS AND RESULTS: We studied 180 HF patients (age = 66.1 ± 10.5 years [yrs]), left ventricular ejection fraction (LVEF = 30.6 ± 6.3 %) undergoing cardiac 123I-mIBG imaging. Early and late heart to mediastinum (H/M) ratios and washout rate were calculated in all patients. Demographic, clinical, and echocardiographic data were also collected. Our study population consisted of 53 patients aged >75 years (age = 77.7 ± 4.0 year), 67 patients aged 62-72 years (age = 67.9 ± 3.2 years) and 60 patients aged ≤61 year (age = 53.9 ± 5.6 years). In elderly patients, both early and late H/M ratios were significantly lower compared to younger patients (p < 0.05). By multivariate analysis, H/M ratios (both early and late) and washout rate were significantly correlated with LVEF and age. CONCLUSIONS: Our data indicate that, in a population of HF patients, there is an independent age-related effect on cardiac SNS innervation assessed by 123I-mIBG imaging. This finding suggests that cardiac 123I-mIBG uptake in patients with HF might be affected by patient age.


Assuntos
3-Iodobenzilguanidina , Envelhecimento , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Sistema Nervoso Simpático/diagnóstico por imagem , Sistema Nervoso Simpático/fisiopatologia , Idoso , Técnicas de Imagem Cardíaca/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA