Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268843

RESUMO

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/química , Internalização do Vírus/efeitos dos fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , COVID-19/virologia , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
2.
J Ethnopharmacol ; 303: 115958, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470308

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthospermum species are used in traditional medicine for treating various pathologies, including bacterial and viral infections. In a screening study, we identified the activity of the ethanolic extracts of Acanthospermum australe and Acanthospermum hispidum against herpes simplex virus 1 (HSV-1). AIM OF THE STUDY: In this work, we analyzed the phytochemical profile and antiviral activity of the chemical fractionation products of Acanthospermum australe and Acanthospermum hispidum. Additionally, we identified the effect of these fractions on different steps of the viral cycle. MATERIALS AND METHODS: Acanthospermum samples were extracted with methanol and further partitioned with solvents of increasing polarities: hexane, chloroform, ethyl acetate, and butanol. Cytotoxicity and antiviral activity were analyzed for each fraction. The active fractions were tested to identify the virucidal effect and the inhibition of virus-cell binding. Further, the effect of these fractions on the replication and viral gene was quantitated by qPCR, and the expression of gD protein was evaluated by Western blot. RESULTS: The chloroform and hexane fractions of Acanthospermum hispidum and Acanthospermum australe showed dose-dependent antiviral activity. The chloroform fraction inhibited the virus-cell binding and virus cycle in a post-entry mechanism by decreasing replication and the expression of early and late viral genes. The hexane fraction did not inhibit virus binding; however, it showed antiviral activity in post-entry events by inhibiting the immediate-early, early, and late genes. We identified in both species the presence of 3.6-dimetoxiapigenin, axillarin, and penduletin in the chloroform fraction and methyl-(Z,Z)-9,12-octadecadienoate and phytol in the hexane fraction. CONCLUSIONS: Acanthospermum hispidum and Acanthospermum australe possess antiviral activity against HSV-1 and affect different steps of the viral cycle. These characteristics make them good candidates for developing phytotherapeutic products against HSV-1.


Assuntos
Asteraceae , Herpesvirus Humano 1 , Chlorocebus aethiops , Animais , Herpesvirus Humano 1/fisiologia , Extratos Vegetais/farmacologia , Hexanos , Antivirais/farmacologia , Clorofórmio , Células Vero , Replicação Viral
3.
Nat Prod Res ; 37(16): 2782-2786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36239484

RESUMO

Herpes simplex virus 1 is one of the most prevalent pathogens worldwide. Resistant strains to current anti-viral treatment have been reported, requiring the search for novel anti-virals. Using a qPCR method to assess anti-herpetic activity from natural products, we analyzed 72 plant extracts from El Salvador and identified eighteen methanolic extracts with anti-viral activity of ≥ 75%. Anti-herpetic activity has not been previously reported in fourteen of the plants (Euphorbia lancifolia, Piper tuberculatum, Cordia alliodora, Tecoma stans, Taraxacum officinale, Hamelia patens, Witheringia solanacea, Emilia fosbergii, Gnaphalium viscosum, Citrus aurantium, Ambrosia peruviana, Carica papaya, Solanum hazenii and Melothria pendula). Four extracts were from species with previously reported anti-herpetic activity (Plantago major, Psidium guajava, Sida acuta and Bursera simaruba). These extracts effective anti-viral concentrations (EC50) were between 203 and 6.31 µg/mL, while the selectivity indexes (SI) were between 55.91 and 2.57. Euphorbia lancifolia showed the most effective anti-viral activity (EC50 = 6.31 µg/mL, SI = 51.82).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA