Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 22(7): 2352-2363, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285312

RESUMO

Protein aggregates play crucial roles in the development of neurodegenerative diseases and p62 is one of the key proteins regulating the formation of protein aggregates. Recently, it has been discovered that depletion of several key enzymes including UFM1-activating enzyme UBA5, UFM1-conjugating enzyme UFC1, UFM1-protein ligase UFL1, and UFM1-specific protease UfSP2 in the UFM1-conjugation system induces p62 accumulation to form p62 bodies in the cytosol. However, it is unknown whether UfSP1 participates in the formation of p62 bodies and whether its enzymatic activity is required for this process. Here, the proximity labeling technique and quantitative proteomics identify SQSTM1/p62 as a UfSP1-interacting protein. Coimmunoprecipitation reveals that p62 indeed interacts with UfSP1 and the immunofluorescence experiment discloses that UfSP1 colocalizes with p62 and promotes the formation of p62-mediated protein aggregates. Mechanistic studies unveil that UfSP1 binds to the ubiquitin-associated domain of p62 and promotes the interaction between p62 and ubiquitinated proteins, thereby increasing the formation of p62 bodies. Interestingly, we further demonstrate that both the catalytic active and inactive UfSP1 promote the formation of p62 bodies through the same mechanism. Taken together, this work discovers that UfSP1 exhibits a noncanonical function independent of its protease activity in the p62 body formation.


Assuntos
Agregados Proteicos , Proteômica , Proteínas Ubiquitinadas , Domínios Proteicos , Peptídeo Hidrolases
2.
Oncogene ; 40(3): 647-662, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219317

RESUMO

The key component in the UFM1 conjugation system, UFM1-binding and PCI domain-containing protein 1 (UFBP1), regulates many biological processes. Recently it has been shown that low UFBP1 protein level is associated with the worse outcome of gastric cancer patients. However, how it responses to the sensitivity of gastric cancer to chemotherapy drugs and the underlying molecular mechanism remain elusive. Here, we discovered that high UFBP1 expression increases the progression-free survival of advanced gastric cancer patients treated with platinum-based chemotherapy. Cell-line based studies unveiled that UFBP1 expression enhances while UFBP1 knockdown attenuates the sensitivity of gastric cancer cells to cisplatin. High-throughput SILAC-based quantitative proteomic analysis revealed that the protein level of aldo-keto reductase 1Cs (AKR1Cs) is significantly downregulated by UFBP1. Flow cytometry analysis showed that UFBP1 expression increases while UFBP1 knockdown reduces reactive oxygen species upon cisplatin treatment. We further disclosed that UFBP1 attenuates the gene expression of AKR1Cs and the transcription activity of the master oxidative stress-response transcription factor Nrf2 (nuclear factor erythroid-2-related factor 2). Detailed mechanistic studies manifested that UFBP1 promotes the formation of K48-linked polyubiquitin chains on Nrf2 and thus augments its proteasome-mediated degradation. Experiments using genetic depletion and pharmacological activation in vitro and in vivo demonstrated that UFBP1 enhances the sensitivity of gastric cancer cells to cisplatin through the Nrf2/AKR1C axis. Overall, this work discovered a novel prognostic biomarker for gastric cancer patients treated with platinum-based chemotherapy and elucidated the underlying molecular mechanism, which may benefit to future personalized chemotherapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Neoplasias Gástricas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA