Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(4): 442-449, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35637339

RESUMO

Materials capable of sustaining high radiation doses at a high temperature are required for next-generation fission and future fusion energy. To date, however, even the most promising structural materials cannot withstand the demanded radiation environment due to irreversible radiation-driven microstructure degradation. Here we report a counterintuitive strategy to achieve exceptionally high radiation tolerance at high temperatures by enabling reversible local disordering-ordering transition of the introduced superlattice nanoprecipitates in metallic materials. As particularly demonstrated in martensitic steel containing a high density of B2-ordered superlattices, no void swelling was detected even after ultrahigh-dose radiation damage at 400-600 °C. The reordering process of the low-misfit superlattices in highly supersaturated matrices occurs through the short-range reshuffling of radiation-induced point defects and excess solutes right after rapid, ballistic disordering. This dynamic process stabilizes the microstructure, continuously promotes in situ defect recombination and efficiently prevents the capillary-driven long-range diffusion process. The strategy can be readily applied into other materials and pave the pathway for developing materials with high radiation tolerance.

2.
J Exp Bot ; 74(14): 4063-4076, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37018757

RESUMO

The floral transition from vegetative to reproductive growth is pivotal in the plant life cycle. NUTRITION RESPONSE AND ROOT GROWTH (OsNRRa), as a CONSTANS, CONSTANS-LIKE, TOC1 (CCT) domain protein, delays flowering in rice, and an orthologous protein, CmNRRa, inhibits flowering in chrysanthemum; however, the underlying mechanism remains unknown. In this study, using yeast two-hybrid screening, we identified the 14-3-3 protein family member Cm14-3-3µ as a CmNRRa-interacting protein. A combination of bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays was performed to confirm the physical interaction between CmNRRa and Cm14-3-3µ. In addition, expression analysis showed that CmNRRa but not Cm14-3-3µ responded to the diurnal rhythm, whereas both genes were highly expressed in leaves. Moreover, the function of Cm14-3-3µ in flowering time regulation was similar to that of CmNRRa. Furthermore, CmNRRa repressed chrysanthemum FLOWERING LOCUS T-like 3 (CmFTL3) and an APETALA 1 (AP1)/FRUITFULL (FUL)-like gene (CmAFL1) but induced TERMINAL FLOWER1 (CmTFL1) directly by binding to their promoters. Cm14-3-3µ enhanced the ability of CmNRRa to regulate the expression of these genes. These findings suggest that there is a synergistic relationship between CmNRRa and Cm14-3-3µ in flowering repression in chrysanthemum.


Assuntos
Arabidopsis , Chrysanthemum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Flores , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Fotoperíodo
3.
J Nanobiotechnology ; 21(1): 44, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747224

RESUMO

Photoreceptor degeneration is one of the major causes of progressive blindness which lacks of curative treatment. GW2580, a highly selective inhibitor of colony-stimulating factor 1 receptor, has the protective potential on neurons; however, little was known about the application of GW2580 on photoreceptor degeneration. In this study, BV-2 and 661W cells coculture system was constructed to investigate the interaction between microglia and photoreceptors. GW2580 was loaded into zeolitic imidazolate framework-90-rhodamine B (ZIF-90-RhB) to synthesize a novel kind of nanoparticles, namely, ZIF-90-RhB-GW2580, through a one-step self-assembly approach. A photoreceptor degeneration model was generated by intense light exposure in zebrafish and ZIF-90-RhB-GW2580 nanoparticles were delivered by the intraocular injection. The results showed that in vitro GW2580 treatment promoted phenotypic transformation in microglia and led to the blockade of photoreceptor apoptosis. Following the intraocular delivery of ZIF-90-RhB-GW2580 nanoparticles, the microglial proliferation and inflammatory response were significantly inhibited; moreover, the photoreceptors underwent alleviated injury with a recovery of retinal structure and visual function. In conclusion, the intraocular injection of ZIF-90-RhB-GW2580 at the early stage enables the precise delivery and sustained release of the GW2580, thus preventing the progression of photoreceptor degeneration.


Assuntos
Nanopartículas , Degeneração Retiniana , Zeolitas , Animais , Peixe-Zebra , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/prevenção & controle
4.
J Am Soc Nephrol ; 33(9): 1708-1725, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918147

RESUMO

BACKGROUND: Emerging evidence indicates that epigenetic modulation of gene expression plays a key role in the progression of autosomal dominant polycystic kidney disease (ADPKD). However, the molecular basis for how the altered epigenome modulates transcriptional responses, and thereby disease progression in ADPKD, remains largely unknown. METHODS: Kidneys from control and ADPKD mice were examined for the expression of CDYL and histone acylations. CDYL expression and its correlation with disease severity were analyzed in a cohort of patients with ADPKD. Cdyl transgenic mice were crossed with Pkd1 knockout mice to explore CDYL's role in ADPKD progression. Integrated cistromic and transcriptomic analyses were performed to identify direct CDYL target genes. High-sensitivity mass spectrometry analyses were undertaken to characterize CDYL-regulated histone lysine crotonylations (Kcr). Biochemical analysis and zebrafish models were used for investigating CDYL phase separation. RESULTS: CDYL was downregulated in ADPKD kidneys, accompanied by an increase of histone Kcr. Genetic overexpression of Cdyl reduced histone Kcr and slowed cyst growth. We identified CDYL-regulated cyst-associated genes, whose downregulation depended on CDYL-mediated suppression of histone Kcr. CDYL assembled nuclear condensates through liquid-liquid phase separation in cultured kidney epithelial cells and in normal kidney tissues. The phase-separating capacity of CDYL was required for efficient suppression of locus-specific histone Kcr, of expression of its target genes, and of cyst growth. CONCLUSIONS: These results elucidate a mechanism by which CDYL nuclear condensation links histone Kcr to transcriptional responses and cystogenesis in ADPKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Histonas/metabolismo , Peixe-Zebra/metabolismo , Rim/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Cistos/genética , Canais de Cátion TRPP/genética
5.
Biochem Biophys Res Commun ; 551: 93-99, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33725575

RESUMO

Colony-stimulating factor 1 receptor (CSF1R) is a tyrosine kinase receptor and a key regulator of proliferation, differentiation, migration, and colonization in macrophage lineage cells. CSF1R was found to be involved in the pathogenesis of immune disorders, hematopoietic diseases, tissue damage, tumor growth and metastasis, and so on. Hence, understanding the role of CSF1R is important. CSF1R is highly conserved among vertebrates. In zebrafish, it is encoded by the colony-stimulating factor 1 receptor a (csf1ra) gene. In this study, a csf1ra-/- zebrafish mutant line was generated using clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (CRISPR/Cas9) technology. csf1ra-/- larvae lacked the yellow cast on their heads and over their flanks, while adult mutants had poorly formed stripes. RNA-sequence analysis revealed that genes related to bile acid secretion, fat digestion and absorption, and pancreatic secretion were differentially expressed in csf1ra-/- mutants, which led to fatty changes in the liver. In addition, genes related to locomotion were also significantly changed, with the more active movement observed in csf1ra-/- larvae. Our study demonstrated that csf1ra participates in the metabolic process and behavior. This study provides new insights into csf1ra function during zebrafish development.


Assuntos
Sistemas CRISPR-Cas/genética , Locomoção/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/deficiência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Técnicas de Inativação de Genes , Larva/genética , Larva/metabolismo , Mutação , Receptor de Fator Estimulador de Colônias de Macrófagos/genética
6.
Cell Biol Int ; 45(3): 569-579, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33169892

RESUMO

Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1-10 ng/ml) of TNF-α and decreased in high concentration (50-100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Odontogênese , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Tempo , Adulto Jovem
7.
Connect Tissue Res ; 60(2): 155-164, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29852799

RESUMO

AIM: Casein kinase 2 interacting protein-1 (CKIP-1) is a recently discovered intracellular regulator of bone formation, muscle cell differentiation, and tumor cell proliferation. Our study aims to identify the inhibition of BMP2-Smad1/5 signaling by CKIP-1 in odontoblastic differentiation of human dental pulp stem cells (DPSCs). MATERIALS AND METHODS: DPSCs infected CKIP-1 siRNA or transfected CKIP-1 full-length plasmid were cultured in odontoblastic differentiation medium or added noggin (200 ng/mL) for 21 days. We examined the effects of CKIP-1 on odontoblastic differentiation, mineralized nodules formation, and interaction by western blot, real-time polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP) staining, alizarin red S staining, and immunoprecipitation. RESULTS: Firstly, we have demonstrated that CKIP-1 expression markedly decreased time-dependently along with cell odontoblastic differentiation. Indeed, the silence of CKIP-1 upregulated odontoblastic differentiation via BMP2-Smad1/5 signaling, while CKIP-1 over-expression had a negative effect on odontoblastic differentiation of DPSCs. Furthermore, CKIP-1 could interact with Neuropilin-1 (NRP1). CONCLUSIONS: This work provides data that advocates a novel perception on odontoblastic differentiation of DPSCs. Therefore, inhibiting the expression of CKIP-1 may be of great significance to the development of dental caries.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Polpa Dentária/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropilina-1/metabolismo , Odontoblastos/citologia , Transdução de Sinais , Células-Tronco/citologia , Adolescente , Proteínas de Transporte/metabolismo , Regulação para Baixo/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Fenótipo , Ligação Proteica , Proteínas Smad/metabolismo , Células-Tronco/metabolismo , Regulação para Cima/genética , Adulto Jovem
8.
Neurochem Res ; 42(4): 1015-1025, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28005222

RESUMO

Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, ßIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adolescente , Diferenciação Celular/fisiologia , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/fisiologia , Humanos , Regeneração Nervosa/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
9.
BMC Plant Biol ; 16: 98, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098270

RESUMO

BACKGROUND: Chrysanthemum, a leading ornamental species, does not tolerate salinity stress, although some of its related species do. The current level of understanding regarding the mechanisms underlying salinity tolerance in this botanical group is still limited. RESULTS: A comparison of the physiological responses to salinity stress was made between Chrysanthemum morifolium 'Jinba' and its more tolerant relatives Crossostephium chinense, Artemisia japonica and Chrysanthemum crassum. The stress induced a higher accumulation of Na(+) and more reduction of K(+) in C. morifolium than in C. chinense, C. crassum and A. japonica, which also showed higher K(+)/Na(+) ratio. Homologs of an Na(+)/H(+) antiporter (SOS1) were isolated from each species. The gene carried by the tolerant plants were more strongly induced by salt stress than those carried by the non-tolerant ones. When expressed heterologously, they also conferred a greater degree of tolerance to a yeast mutant lacking Na(+)-pumping ATPase and plasma membrane Na(+)/H(+) antiporter activity. The data suggested that the products of AjSOS1, CrcSOS1 and CcSOS1 functioned more effectively as Na (+) excluders than those of CmSOS1. Over expression of four SOS1s improves the salinity tolerance of transgenic plants and the overexpressing plants of SOS1s from salt tolerant plants were more tolerant than that from salt sensitive plants. In addition, the importance of certain AjSOS1 residues for effective ion transport activity and salinity tolerance was established by site-directed mutagenesis and heterologous expression in yeast. CONCLUSIONS: AjSOS1, CrcSOS1 and CcSOS1 have potential as transgenes for enhancing salinity tolerance. Some of the mutations identified here may offer opportunities to better understand the mechanistic basis of salinity tolerance in the chrysanthemum complex.


Assuntos
Artemisia/metabolismo , Chrysanthemum/metabolismo , Proteínas de Plantas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Artemisia/efeitos dos fármacos , Artemisia/genética , Chrysanthemum/efeitos dos fármacos , Chrysanthemum/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Potássio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Salinidade , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/classificação , Trocadores de Sódio-Hidrogênio/genética , Especificidade da Espécie
10.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591513

RESUMO

In this work, to explore potential substitutions for the Co binder phase, ultrafine-grain WC-based cermets with various binder phases of Co, Ni and AlCoCrNiFeCu HEA were prepared using the SPS method. Based on SPS, WC-based cermets were fabricated at higher speed, showing fine carbide particles less than 410 µm. The microstructure, mechanical properties and wear properties were systematically evaluated. By comparison, the grain size of WC was the lowest for WC-10Co, while WC-10 HEA cermet held the coarsest WC particles. The hardness and fracture toughness of WC-10 HEA were the best among all three samples, with values of 93.2 HRA and 11.3 MP·m1/2. However, the bending strength of WC-10HEA was about 56.1% lower than that of WC-10Co, with a value of 1349.6 MPa. The reduction in bending strength is attributed to the lower density, formation of a newly Cr-Al rich phase and coarser WC grains. In dry sliding wear conditions, WC-10 HEA showed the lowest wear rate (0.98 × 10-6 mm3/(N·m)) and coefficient of friction (0.19), indicating the best wear resistance performance. This reveals that WC-based cermet with a HEA binder phase has superior wear performance due to the higher hardness and good self-lubricating effect of the wear products.

11.
Carcinogenesis ; 34(6): 1323-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23404993

RESUMO

Incidence of hepatocellular carcinoma (HCC) is dramatically increasing and is the third cause of cancer death worldwide. One key approach to control HCC is chemoprevention by naturally occurring agents. This study aims at investigating the antitumor effect of oleanolic acid (OA) and the molecular mechanisms. BALB/c mice were injected subcutaneously with HepG2 cells to establish transplanted tumors. Apoptosis and cell cycle arrest-related markers and signaling cascades were determined by western blot, immunofluorescence, reverse transcriptase-polymerase chain reaction and flow cytometric analysis. OA exhibited inhibitory effect on HCC through induction of apoptosis and cell cycle arrest both in transplanted tumors and in HepG2 cells. OA induced apoptosis through mitochondrial pathway, evidenced by inhibition of Akt/mammalian target of rapamycin pathway, mitochondrial dysfunction, transient increase of adenosine triphosphate, increase of Bax/Bcl-2 ratio, increased release of cytochrome c and activation of caspase/poly (ADP-ribose) polymerase. Activation of mitochondrial apoptotic pathway may be due to reactive oxygen species generated by mitochondrial fatty acid oxidation, resulted from enhancement of lipolysis regulated by cyclic adenosine 3',5'-monophosphate response element-binding protein-hormone-sensitive lipase/peroxisome proliferator-activated receptor γ signaling. OA induced G2/M cell cycle arrest through p21-mediated downregulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell cycle arrest. OA demonstrated significant antitumor activities in HCC in vivo and in vitro models. These data provide new insights into the mechanisms underlying the antitumor effect of OA.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Ácido Oleanólico/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/biossíntese , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina B1/biossíntese , Ciclo-Oxigenase 2/biossíntese , Citocromos c/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Transplante de Neoplasias , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transplante Heterólogo
12.
Front Microbiol ; 14: 1287964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075865

RESUMO

Background: To deeply explore the dynamic trends, focal points and emerging topics of bacterial biofilm eradication field and provide novel insights for prospective research endeavors, the first global bibliometric and visualized analysis of the field was employed in this study. Methods: The study meticulously curated articles and reviews concentrating on biofilm eradication from the Web of Science Core Collection (WoSCC) and identified literature published in 2012-2022 for further analysis, and the bibliometric and visualized analysis was performed to elucidate a clustering pattern in the domain with tools mainly including CiteSpace and VOSviewer. Results: 15,503 authors affiliated with 2,397 institutions spanning 96 countries or regions contributed to a corpus of 3,201 articles, containing 7,005 keywords. The USA emerged as a commanding vanguard in exploring the antibiofilm strategies and displaying pioneering initiatives within this sphere. The Chinese Academy of Sciences (CAS) emerged as the most prolific source of publications. Noteworthy among authors, Pandian Shunmugiah Karutha secured the lead in article contributions as well as co-citations while Deng Le with his team is poised to become a dominant influence in the future. Despite that, the extent of collaborative engagement across different institutions and authors appeared to fall short of its potential. Frontiers in Microbiology led the discourse by publishing a substantial body of articles and standing as the most recurrently co-cited publication. The most influential research domains encompassed "bacterial biofilm formation, "photodynamic therapy" and "phage therapy." Recent trends and forefronts concentrate on intensifying research into facilitating the shift of multiple strategies for biofilm eradication from controlled lab settings or animal studies to real-world clinical environments. Conclusion: Fundamentally, this study presents a comprehensive scrutiny and reveals that the realm of bacterial biofilm eradication is undergoing rapid evolution, with even greater expansion anticipated in the times ahead. Subsequent scholars should emphasize the augmentation of collaborative efforts and focus their energies on emerging topics, thus contributing to break through current barriers in transitioning biofilm eradication strategies from the "fundamental" stage to "practical" application.

13.
Chem Commun (Camb) ; 59(67): 10153-10156, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37530562

RESUMO

We propose a universal fluorescence method for detection of nucleic acids based on rolling circle amplification (RCA) combined with a magnetic DNA machine and using dengue virus nucleic acids as an example target. RCA specifically amplifies the target and yields a large number of initiators employing heat-labile double-stranded DNase. The magnetic DNA machine produces a fluorescence signal and eliminates background noise. This method achieved a wide linear range, promising recovery and ultrahigh recognition specificity for one-base mismatches, and indicates the potential application of this sensing strategy in the clinical diagnosis of nucleic acids of pathogens.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Desoxirribonuclease I , Técnicas Biossensoriais/métodos
14.
Nat Commun ; 14(1): 806, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781880

RESUMO

Oxygen solute strengthening is an effective strategy to harden alloys, yet, it often deteriorates the ductility. Ordered oxygen complexes (OOCs), a state between random interstitials and oxides, can simultaneously enhance strength and ductility in high-entropy alloys. However, whether this particular strengthening mechanism holds in other alloys and how these OOCs are tailored remain unclear. Herein, we demonstrate that OOCs can be obtained in bcc (body-centered-cubic) Ti-Zr-Nb medium-entropy alloys via adjusting the content of Nb and oxygen. Decreasing the phase stability enhances the degree of (Ti, Zr)-rich chemical short-range orderings, and then favors formation of OOCs after doping oxygen. Moreover, the number density of OOCs increases with oxygen contents in a given alloy, but adding excessive oxygen (>3.0 at.%) causes grain boundary segregation. Consequently, the tensile yield strength is enhanced by ~75% and ductility is substantially improved by ~164% with addition of 3.0 at.% O in the Ti-30Zr-14Nb MEA.

15.
World J Gastroenterol ; 29(22): 3469-3481, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37389235

RESUMO

BACKGROUND: Wild rats have the potential to hold zoonotic infectious agents that can spread to humans and cause disease. AIM: To better understand the composition of gut bacterial communities in rats is essential for preventing and treating such diseases. As a tropical island located in the south of China, Hainan province has abundant rat species. Here, we examined the gut bacterial composition in wild adult rats from Hainan province. METHODS: Fresh fecal samples were collected from 162 wild adult rats, including three species (Rattus norvegicus, Leopoldamys edwardsi, and Rattus losea), from nine regions of Hainan province between 2017-2018. RESULTS: We analyzed the composition of gut microbiota using the 16S rRNA gene amplicon sequencing. We identified 4903 bacterial operational taxonomic units (30 phyla, 175 families, and 498 genera), which vary between samples of different rat species in various habitats at various times of the year. In general, Firmicutes were the most abundant phyla, followed by Bacteroidetes (15.55%), Proteobacteria (6.13%), and Actinobacteria (4.02%). The genus Lactobacillus (20.08%), unidentified_Clostridiales (5.16%), Romboutsia (4.33%), unidentified_Ruminococcaceae (3.83%), Bacteroides (3.66%), Helicobacter (2.40%) and Streptococcus (2.37%) were dominant. CONCLUSION: The composition and abundance of the gut microbial communities varied between rat species and locations. This work provides fundamental information to identify microbial communities useful for disease control in Hainan province.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Ratos , Animais , RNA Ribossômico 16S/genética , China , Bacteroides , Clostridiales
16.
Int J Nanomedicine ; 17: 1381-1395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369034

RESUMO

Background: Hepatocellular carcinoma (HCC), arising from hepatocytes, is the most common primary liver cancer. It is urgent to develop novel therapeutic approaches to improve the grim prognosis of advanced HCC. 10-hydroxycamptothecin (HCPT) has good antitumor activity in cells; however, its hydrophobicity limits its application in the chemotherapy of HCC. Recently, nanoscale porphyrin metal-organic frameworks have been used as drug carriers due to their low biotoxicity and photodynamic properties. Methods: Nanoscale zirconium porphyrin metal-organic frameworks (NMOFs) were coated with arginine-glycine-aspartic acid (RGD) peptide to prepare NMOFs-RGD first. The HepG2 cell line, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of NMOFs-RGD both in vitro and in vivo. Then, NMOFs were used as the skeleton, HCPT was assembled into the pores of NMOFs, while RGD peptide was wrapped around to synthesize a novel kind of nanocomposites, HCPT@NMOFs-RGD. The tissue distribution and chemo- and photodynamic therapeutic effects of HCPT@NMOFs-RGD were evaluated in a doxycycline-induced zebrafish HCC model and xenograft mouse model. Results: NMOFs-RGD had low biotoxicity, good biocompatibility and excellent imaging capability. In HCC-bearing zebrafish, HCPT@NMOFs-RGD were specifically enriched in the tumor by binding specifically to integrin αvß3 and led to a reduction in tumor volume. Moreover, the xenografts in mice were eliminated remarkably following HCPT@NMOFs-RGD treatment with laser irradiation, while little morphological change was found in other main organs. Conclusion: The nanocomposites HCPT@NMOFs-RGD accomplish tumor targeting and play synergistic chemo- and photodynamic therapeutic effects on HCC, offering a novel imaging-guided drug delivery and theranostic platform.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanocompostos , Fotoquimioterapia , Animais , Camptotecina/análogos & derivados , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Oligopeptídeos , Peixe-Zebra
17.
Int Immunopharmacol ; 112: 109245, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150227

RESUMO

Photoreceptor degeneration is a principal event in a variety of human retinal diseases. Progressive apoptosis of photoreceptors leads to impaired vision and blindness, for which there is no curative treatment. Adenosine 2A receptors (A2AR) are expressed in microglia. Blockade of A2AR has been shown to protect neurons via suppression of inflammation. However, the therapeutic effects of A2AR antagonists on photoreceptor degeneration have not been characterized. In this study, adult zebrafish were exposed to short term high-intensity light to induce photoreceptor death. SCH58261, a selective A2AR antagonist, was immediately injected into the vitreous body. Photoreceptor degeneration and microglia-induced inflammation were evaluated using immunohistochemistry, quantitative real-time polymerase chain reaction, polarization sensitive optical coherence tomography, and optomotor response. Co-culture of BV2 and 661W cells was used to investigate the interaction between microglia and photoreceptors. The results showed that A2AR was over-expressed during photoreceptor degeneration. Following intraocular SCH58261 injection, microglial activation and release of inflammatory factors were inhibited, and photoreceptor survival increased. Inactivation of microglia prevented apoptosis and autophagy in photoreceptors. Our results showed that SCH58261 intervention at the early stage of photoreceptor degeneration protected photoreceptors through inhibition of the inflammatory response, apoptosis, and autophagy.


Assuntos
Microglia , Degeneração Retiniana , Animais , Humanos , Inflamação/tratamento farmacológico , Degeneração Retiniana/tratamento farmacológico , Peixe-Zebra , Receptor A2A de Adenosina
18.
Cytotechnology ; 74(2): 259-270, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464161

RESUMO

Dental pulp stem cells (DPSCs) are well known for their capable of both self-renewal and multilineage differentiation. Dental tissue diseases, include caries, are often accompanied by inflammatory microenvironment, and muramyl dipeptide (MDP) is involved in the inflammatory stimuli to influence the differentiation of DPSCs. Nucleotide-binding oligomerization domain 2 (NOD2), a member of the cytosolic Nod-like receptor (NLR) family, plays a key role in inflammatory homeostasis regulation, but the role of NOD2 in DPSCs differentiation under inflammatory is still unclear. In this study, we identified that MDP suppressed odontogenic differentiation of DPSCs via NOD2/ NF-κB/p65 signaling pathway. Alizarin red staining and ALP activity showed the odontogenic differentiation was suppressed by MDP in a concentration-dependent manner, and the expression of dentin differentiation marker protein dentin matrix protein 1 (DMP-1) and dentin Sialophosphoprotein (DSPP) also indicated the same results. The expression of NOD2 increased gradually with the concentration of MDP as well as the phosphorylation and nuclear translocation of p65, which meant NF-κB signaling pathway was activated. Further, the interference of NOD2 inhibited the phosphorylation and nuclear translocation of p65 and reversed the MDP-mediated decrease of odontoblast differentiation of DPSCs. Our study showed that MDP can inhibit the odontoblast differentiation of DPSCs in a concentration-dependent manner. The NF-κB signaling pathway was activated by increasing expression of NOD2. Interference of NOD2 reversed the negative ability odontoblast differentiation of DPSCs in the inflammatory environment. Our study might provide a theoretical basis for the clinical treatment for dentinogenesis of DPSCs.

19.
Cell Reprogram ; 24(2): 95-104, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35172106

RESUMO

Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.


Assuntos
Histona Acetiltransferases , NF-kappa B , Osteogênese , Células-Tronco , Fator de Necrose Tumoral alfa , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Histona Acetiltransferases/genética , Humanos , NF-kappa B/metabolismo , Osteogênese/fisiologia , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/farmacologia
20.
Phytother Res ; 25(7): 1031-40, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21254272

RESUMO

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia. Although the clear mechanisms of DM and insulin resistance are still to be cleared, it has been well documented that reactive oxygen species (ROS) play a pivotal role in DM and multiple types of insulin resistance. For the past few years, natural substances have been shown to have the potential to treatment DM. Attention has been especially focused on plants rich in triterpenoids, which generally show antioxidant and antiglycation effect. In our previous studies, it was shown that oleanolic acid (OA), a natural triterpenoid and an aglycone of many saponins, is a potent antioxidant acting as not only a free radical-scavenger through direct chemical reactions but also as a biological molecule, which may enhance the antioxidant defenses. The present study aimed to investigate the potential antidiabetic effect of OA. Oleanolic acid showed a significant blood glucose-lowering and weight-losing effect in diabetic animals induced by streptozotocin (STZ). In the insulin resistant model, it was also shown that OA may promote insulin signal transduction and inhibit oxidative stress-induced hepatic insulin resistance and gluconeogenesis, in which process the phosphorylation of ERK and the protective effect on mitochondrial function may be involved. These findings may significantly better the understanding of the pharmacological actions of OA and advance therapeutic approaches to DM.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Ácido Oleanólico/farmacologia , Animais , Antioxidantes/farmacologia , Glicemia/efeitos dos fármacos , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Humanos , Insulina/metabolismo , Resistência à Insulina , Masculino , Potencial da Membrana Mitocondrial , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA