Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 68(2): 366-380, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32374895

RESUMO

Ruan Jian Qing Mai formula (RJQM), a multicomponent herbal formula, has been widely used to treat peripheral arterial disease (PAD) in China. However, its active compounds and mechanisms of action are still unknown. First, RNA sequencing analysis of 15 healthy and 16 PAD samples showed that 524 PAD differential genes were significantly enriched in Go Ontology (ribonucleotide metabolic process, oxidoreductase complex, and electron transfer activity), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA pathways (OXPHOS and TCA cycle), miRNA (MIR183), and kinase (PAK6). Fifty-three active ingredients in RJQM had similar structures to the seven drug molecules in CLUE. Then, network topology analysis of the 53 components-target-pathway-disease network yielded 10 active ingredients. Finally, computational toxicity estimations showed that the median lethal dose (LD50) of the 10 active ingredients was above 1000 mg/kg, and eight of them did not cause hepatotoxicity, mutagenicity, carcinogenicity, cytotoxicity, and immunotoxicity nor activate 12 toxic pathways. In conclusion, RJQM has a protection effect on PAD by regulating a complex molecular network. Part of the mechanism is associated with the regulation of OXPHOS by 10 active components, which may alleviate mitochondrial dysfunction and pathological metabolic programming.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Doença Arterial Periférica/prevenção & controle , Humanos , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo
2.
Cell Physiol Biochem ; 45(3): 899-916, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29421811

RESUMO

BACKGROUND/AIMS: Podocyte injury, especially podocyte apoptosis, plays a major role in early-stage diabetic nephropathy (DN). Swiprosin-1, also known as EF hand domain containing 2 (EFhd2), is a Ca2+-binding protein in different cell types. However, the function of swiprosin-1 in podocytes remains unknown. METHODS: The expression and distribution of swiprosin-1 were investigated in the mouse renal glomerulus and conditionally immortalized mouse podocyte cell line MPC-5. The expression of swiprosin-1 was also detected in streptozotocin (STZ)-treated mice and MPC-5 cells treated with high glucose (HG). Nephrin and podocin were detected by immunohistochemistry and immunofluroscence. Collagen IV, transforming growth factor-ß (TGF-ß) and fibronectin mRNA expressions were assayed by real-time PCR. Apoptotic proteins and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were detected by immunoblotting. RESULTS: Swiprosin-1 was found to be expressed in podocytes of the mouse glomerulus and MPC-5 cells. Swiprosin-1 expression was increased in STZ-treated mice and MPC-5 cells treated with HG. In Swiprosin-1-/- diabetic mice, kidney/ body weight, urinary albumin, podocyte foot process effacement and glomerular basement membrane thickening were attenuated; the downregulation of nephrin and podocin expression in the glomerulus was inhibited; and the upregulation of collagen IV, TGF-ß and fibronectin mRNA expression in the renal cortex was ameliorated as compared with those in diabetic swiprosin-1+/+ mice. In addition, the increased apoptosis of podocytes, proapoptotic protein expression and p38 phosphorylation in Swiprosin-1-/- diabetic mice were inhibited as compared with those in diabetic swiprosin-1+/+ mice. Knockdown of swiprosin-1 in MPC-5 cells reduced the apoptosis of podocytes, proapoptotic protein expression and p38 phosphorylation induced by HG. Targeted knockdown of p38 attenuated the increased apoptosis of MPC-5 cells over-expressing swiprosin-1. CONCLUSION: Swiprosin-1 expression in podocytes of the mouse glomerulus played a critical role in early-stage DN. Swiprosin-1 deficiency in early DN attenuated mitochondria-dependent podocyte apoptosis induced by hyperglycemia or HG via p38 MAPK signaling pathway.


Assuntos
Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Diabetes Mellitus Experimental/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fibronectinas/genética , Fibronectinas/metabolismo , Glucose/farmacologia , Glomérulos Renais/citologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Podócitos/citologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Microbiol Immunol ; 60(2): 82-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26891940

RESUMO

This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Extratos Vegetais/farmacologia , Rubus/química , Apoptose/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Farmacorresistência Fúngica , Sinergismo Farmacológico , Ergosterol/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Rodaminas/metabolismo
4.
Biol Pharm Bull ; 37(1): 37-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24389479

RESUMO

Zorro2 is a member of a non-long terminal repeat (LTR) retrotransposon family in Candida albicans, but as yet no clear evidence has been provided to establish either transcription or transposition activity for Zorro2. In this study, the relative expression changes of two open reading frames in Zorro2, ORF19.7274 and ORF19.7275, were examined in response to miconazole (MCZ), and were found to be increased by this treatment. As well, the copy number and the transcripts of Zorro2 in MCZ-induced resistant daughter strains were increased compared to the parental strain, indicating that transposition of Zorro2 occurred during long-term MCZ treatment. Intriguingly, the transcription activity of Zorro2 retrotransposons was significantly inhibited when the cells were treated with MCZ together with antioxidant N-acetyl-L-cysteine (NAC). As both the level of intracellular reactive oxygen species (ROS) and the expression of genes involving DNA repair activated by MCZ were reduced when combined with the treatment of NAC, we propose that the damage caused by accumulation of ROS under MCZ stress is a major reason for the transcription and transposition activation of the Zorro2 retrotransposon.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Miconazol/farmacologia , Fases de Leitura Aberta , Espécies Reativas de Oxigênio/metabolismo , Retroelementos , Transcrição Gênica , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Candida albicans/genética , Reparo do DNA , Genoma Fúngico
5.
Yao Xue Xue Bao ; 49(11): 1563-8, 2014 Nov.
Artigo em Zh | MEDLINE | ID: mdl-25757282

RESUMO

Abstract: Our previous work revealed berberine can significantly enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans, which suggested that berberine has synergistic antifungal activity with fluconazole. Preliminary SAR of berberine needs to be studied for the possibility of investigating its target and SAR, improving its drug-likeness, and exploring new scaffold. In this work, 13-substitutited benzyl berberine derivatives and N-benzyl isoquinoline analogues were synthesized and characterized by 1H NMR and MS. Their synergetic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The 13-substitutited benzyl berberine derivatives 1a-1e exhibited comparable activity to berberine, which suggested that the introduction of functional groups to C-13 can maintain its activity. The N-benzyl isoquinolines, which were designed as analogues of berberine with its D ring opened, exhibited lower activity than berberine. However, compound 2b, 2c, and 4b showed moderate activity, which indicated that berberine may be deconstructed to new scaffold with synergistic antifungal activity with fluconazole. The results of our research may be helpful to the SAR studies on its other biological activities.


Assuntos
Antifúngicos/farmacologia , Berberina/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Farmacorresistência Fúngica , Sinergismo Farmacológico , Isoquinolinas/farmacologia , Testes de Sensibilidade Microbiana
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 990-3, 2014 Apr.
Artigo em Zh | MEDLINE | ID: mdl-25007615

RESUMO

A novel facile method for on-site detection of antipertensive chemicals (e. g. nicardipine hydrochloride, doxazosin mesylate, propranolol hydrochloride, and hydrochlorothiazide) adulterated in traditional Chinese medicine for hypertension using thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) was reported in the present paper. Analytes and pharmaceutical matrices was separated by TLC, then SERS method was used to complete qualitative identification of trace substances on TLC plate. By optimizing colloidal silver concentration and developing solvent, as well as exploring the optimal limits of detection (LOD), the initially established TLC-SERS method was used to detect real hypertension Chinese pharmaceuticals. The results showed that this method had good specificity for the four chemicals and high sensitivity with a limit of detection as lower as to 0.005 microg. Finally, two of the ten antipertensive drugs were detected to be adulterated with chemicals. This simple and fast method can realize rapid detection of chemicals illegally for doping in antipertensive Chinese pharmaceuticals, and would have good prospects in on-site detection of chemicals for doping in Chinese pharmaceuticals.


Assuntos
Anti-Hipertensivos/análise , Cromatografia em Camada Fina , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Limite de Detecção , Sensibilidade e Especificidade , Análise Espectral Raman
7.
Diabetes Metab Syndr Obes ; 17: 1511-1521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586542

RESUMO

Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.

8.
Int J Biol Macromol ; 256(Pt 1): 128270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000586

RESUMO

Sirtuins (SIRT1-SIRT7), as a family of NAD+-dependent protein modifying enzymes, have various catalytic functions, such as deacetylases, dealkalylases, and deribonucleases. The Sirtuins family is directly or indirectly involved in pathophysiological processes such as glucolipid metabolism, oxidative stress, DNA repair and inflammatory response through various pathways and assumes an important role in several cardiovascular diseases such as atherosclerosis, myocardial infarction, hypertension and heart failure. A growing number of studies supports that metabolic and bioenergetic reprogramming directs the sequential process of inflammation. Failure of homeostatic restoration leads to many inflammatory diseases, and that macrophages are the central cells involving the inflammatory response and are the main source of inflammatory cytokines. Regulation of cellular metabolism has emerged as a fundamental process controlling macrophage function, but its exact signaling mechanisms remain to be revealed. Understanding the precise molecular basis of metabolic control of macrophage inflammatory processes may provide new approaches for targeting immune metabolism and inflammation. Here, we provide an update of studies in cardiovascular disease on the function and role of sirtuins in macrophage inflammation and metabolism, as well as drug candidates that may interfere with sirtuins, pointing to future prospects in this field.


Assuntos
Doenças Cardiovasculares , Sirtuínas , Humanos , Sirtuínas/genética , Doenças Cardiovasculares/genética , Estresse Oxidativo/genética , Macrófagos/metabolismo , Inflamação/metabolismo
9.
Front Cell Infect Microbiol ; 14: 1397724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966251

RESUMO

Cryptococcus neoformans is at the top of the list of "most wanted" human pathogens. Only three classes of antifungal drugs are available for the treatment of cryptococcosis. Studies on antifungal resistance mechanisms are limited to the investigation of how a particular antifungal drug induces resistance to a particular drug, and the impact of stresses other than antifungals on the development of antifungal resistance and even cross-resistance is largely unexplored. The endoplasmic reticulum (ER) is a ubiquitous subcellular organelle of eukaryotic cells. Brefeldin A (BFA) is a widely used chemical inducer of ER stress. Here, we found that both weak and strong selection by BFA caused aneuploidy formation in C. neoformans, mainly disomy of chromosome 1, chromosome 3, and chromosome 7. Disomy of chromosome 1 conferred cross-resistance to two classes of antifungal drugs: fluconazole and 5-flucytosine, as well as hypersensitivity to amphotericin B. However, drug resistance was unstable, due to the intrinsic instability of aneuploidy. We found overexpression of AFR1 on Chr1 and GEA2 on Chr3 phenocopied BFA resistance conferred by chromosome disomy. Overexpression of AFR1 also caused resistance to fluconazole and hypersensitivity to amphotericin B. Furthermore, a strain with a deletion of AFR1 failed to form chromosome 1 disomy upon BFA treatment. Transcriptome analysis indicated that chromosome 1 disomy simultaneously upregulated AFR1, ERG11, and other efflux and ERG genes. Thus, we posit that BFA has the potential to drive the rapid development of drug resistance and even cross-resistance in C. neoformans, with genome plasticity as the accomplice.


Assuntos
Aneuploidia , Antifúngicos , Brefeldina A , Cryptococcus neoformans , Farmacorresistência Fúngica , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Brefeldina A/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Anfotericina B/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Flucitosina/farmacologia , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
10.
Fungal Genet Biol ; 51: 50-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23246394

RESUMO

Candida albicans has become the fourth leading pathogen of nosocomial bloodstream infections largely due to biofilm formation on implanted medical devices. Previous microarray data indicated that almost all genes in methionine (Met)/cysteine (Cys) biosynthesis pathway were up-regulated during biofilm formation, especially during the adherence period. In this work, we studied the role of Met/Cys biosynthesis pathway by disrupting ECM17, a gene encoding sulfite reductase in C. albicans. It was found that the ecm17Δ/Δ mutant failed to catalyze the biochemical reaction from sulfite to H(2)S and hardly grew in media lacking Met and Cys. NaSH, the donor of H(2)S, dose-dependently improved the growth of ecm17Δ/Δ in media lacking a sulfur source. Sufficient Met/Cys supply inhibited the expression of ECM17 in a dose-dependent manner. These results validated the important role of ECM17 in Met/Cys biosynthesis. Interestingly, the ecm17Δ/Δ mutant showed diminished ability to form biofilm, attenuated adhesion on abiotic substrate and decreased filamentation on solid SLD medium, especially under conditions lacking Met/Cys. Further results indicated that ECM17 affected the expressions of ALS3, CSH1, HWP1 and ECE1, and that the cAMP-protein kinase A (PKA) pathway was associated with ECM17 and Met/Cys biosynthesis pathway. These results provide new insights into the role of Met/Cys biosynthesis pathway in regulating cAMP-PKA pathway and benefiting biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/enzimologia , Candida albicans/fisiologia , Cisteína/biossíntese , Metionina/biossíntese , Sulfito Redutase (NADPH)/metabolismo , Candida albicans/genética , Adesão Celular , Meios de Cultura/química , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Sulfeto de Hidrogênio/metabolismo , Hifas/crescimento & desenvolvimento , Sulfito Redutase (NADPH)/genética , Sulfitos/metabolismo
11.
Front Microbiol ; 14: 1137083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113223

RESUMO

Candida parapsilosis is an emerging major human fungal pathogen. Echinocandins are first-line antifungal drugs for the treatment of invasive Candida infections. In clinical isolates, tolerance to echinocandins in Candida species is mostly due to point mutations of FKS genes, which encode the target protein of echinocandins. However, here, we found chromosome 5 trisomy was the major mechanism of adaptation to the echinocandin drug caspofungin, and FKS mutations were rare events. Chromosome 5 trisomy conferred tolerance to echinocandin drugs caspofungin and micafungin and cross-tolerance to 5-flucytosine, another class of antifungal drugs. The inherent instability of aneuploidy caused unstable drug tolerance. Tolerance to echinocandins might be due to increased copy number and expression of CHS7, which encodes chitin synthase. Although copy number of chitinase genes CHT3 and CHT4 was also increased to the trisomic level, the expression was buffered to the disomic level. Tolerance to 5-flucytosine might be due to the decreased expression of FUR1. Therefore, the pleiotropic effect of aneuploidy on antifungal tolerance was due to the simultaneous regulation of genes on the aneuploid chromosome and genes on euploid chromosomes. In summary, aneuploidy provides a rapid and reversible mechanism of drug tolerance and cross-tolerance in C. parapsilosis.

12.
Microbiol Spectr ; : e0301622, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853047

RESUMO

Candida albicans is a prevalent, opportunistic, human fungal pathogen. Antifungal drug resistance and tolerance are two distinct mechanisms of adaptation to drugs. Studies of mechanisms of drug resistance are limited to the applications of high doses of drugs. Few studies have investigated the effects of subinhibitory amounts of drugs on the development of drug resistance or tolerance. In this study, we found that growth in a subinhibitory amount of fluconazole (FLC), a widely used antifungal drug, for just a short time was sufficient to induce aneuploidy in C. albicans. Surprisingly, the aneuploids displayed fitness loss in the presence of subinhibitory FLC, but a subpopulation of cells could tolerate up to 128 µg/mL FLC. Particular aneuploidy (ChrR trisomy) caused tolerance, not resistance, to FLC. In the absence of FLC, the aneuploids were unstable. Depending on the karyotype, aneuploids might become completely euploid or maintain particular aneuploidy, and, accordingly, the tolerance would be lost or maintained. Mechanistically, subinhibitory FLC was sufficient to induce the expression of several ERG genes and as well as the drug efflux gene MDR1. Aneuploids had a constitutive high-level expression of genes on and outside the aneuploid chromosomes, including most of the ERG genes as well as the drug efflux genes MDR1 and CDR2. Therefore, aneuploids were prepared for FLC challenges. In summary, aneuploidy provides a rapid and reversible strategy of adaptation when C. albicans is challenged with subinhibitory concentrations of FLC. IMPORTANCE Genome instability is a hallmark of C. albicans. Aneuploidy usually causes fitness loss in the absence of stress but confers better fitness under particular stress conditions. Therefore, aneuploidy is considered to be a double-edged sword. Here, we extend the understanding of aneuploidy. We found that aneuploidy arose under weak stress conditions but that it did not confer better fitness to the stress. Instead, it was less fit than its euploid counterparts. If the stress was withdrawn, aneuploidy spontaneously reverted to euploidy. If the stress became stronger, aneuploidy enabled subpopulation growth in a dose-independent manner of the stress. Therefore, we posit that aneuploidy enables the rapid and reversible development of drug tolerance in C. albicans. Further studies are required to investigate whether this is a general mechanism in human fungal pathogens.

13.
mBio ; 14(2): e0022723, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877011

RESUMO

Antifungal drug tolerance is a response distinct from resistance, in which cells grow slowly above the MIC. Here, we found that the majority (69.2%) of 133 Candida albicans clinical isolates, including standard lab strain SC5314, exhibited temperature-enhanced tolerance at 37°C and 39°C, and were not tolerant at 30°C. Other isolates were either always tolerant (23.3%) or never tolerant (7.5%) at these three temperatures, suggesting that tolerance requires different physiological processes in different isolates. At supra-MIC fluconazole concentrations (8 to 128 µg/mL), tolerant colonies emerged rapidly at a frequency of ~10-3. In liquid passages over a broader range of fluconazole concentrations (0.25 to 128 µg/mL), tolerance emerged rapidly (within one passage) at supra-MICs. In contrast, resistance appeared at sub-MICs after 5 or more passages. Of 155 adaptors that evolved higher tolerance, all carried one of several recurrent aneuploid chromosomes, often including chromosome R, alone or in combination with other chromosomes. Furthermore, loss of these recurrent aneuploidies was associated with a loss of acquired tolerance, indicating that specific aneuploidies confer fluconazole tolerance. Thus, genetic background and physiology and the degree of drug stress (above or below the MIC) influence the evolutionary trajectories and dynamics with which antifungal drug resistance or tolerance emerges. IMPORTANCE Antifungal drug tolerance differs from drug resistance: tolerant cells grow slowly in drug, while resistant cells usually grow well, due to mutations in a few known genes. More than half of Candida albicans clinical isolates have higher tolerance at body temperature than they do at the lower temperatures used for most lab experiments. This implies that different isolates achieve drug tolerance via several cellular processes. When we evolved different strains at a range of high drug concentrations above inhibitory levels, tolerance emerged rapidly and at high frequency (one in 1,000 cells) while resistance appeared only later at very low drug concentrations. An extra copy of all or part of chromosome R was associated with tolerance, while point mutations or different aneuploidies were seen with resistance. Thus, genetic background and physiology, temperature, and drug concentration all influence how drug tolerance or resistance evolves.


Assuntos
Antifúngicos , Fluconazol , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Tolerância a Medicamentos , Aneuploidia , Mitomicina/farmacologia , Cromossomos
14.
Cancer Med ; 12(10): 11073-11096, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36645225

RESUMO

Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Interferência de RNA , Prognóstico , Linhagem Celular Tumoral
15.
Pancreas ; 52(2): e151-e162, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523607

RESUMO

OBJECTIVES: This study aimed to develop a liver metastasis-related gene prognostic index (LMPI) for pancreatic ductal adenocarcinoma prognosis and therapy. METHODS: The Cancer Genome Atlas data set was used to identify liver metastasis-related hub genes via weighted gene coexpression network analysis. The core genes were identified to construct an LMPI by using the Cox regression method. An immune cell abundance identifier was applied to determine the immune cell abundance. RESULTS: A total of 78 hub liver metastasis-related genes in the black module were significantly enriched in complement and coagulation cascades, fat digestion and absorption, and the PPAR signaling pathway. Then, an LMPI was constructed on the basis of the 5 prognostic genes (MOGAT3, ASGR1, TRPM8, SGSM1, and LOC101927851). Patients with higher LMPI scores had poor overall survival, more co-occurring or mutually exclusive pairs of driver gene mutations, and less benefit from immunotherapy than patients with lower LMPI scores. In addition, a high correlation was also found between LMPI scores and immune infiltration, such as CD4 naive, CD8 T, cytotoxic T, T helper 2, follicular helper T, and natural killer cells. CONCLUSIONS: The core genes of the LMPI developed may be independent factors for predicting prognosis, immune characteristics, and immunotherapy efficacy in pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Prognóstico , Receptor de Asialoglicoproteína , Neoplasias Pancreáticas
16.
Artigo em Inglês | MEDLINE | ID: mdl-35770417

RESUMO

OBJECTIVE: Chemotherapy induced phlebitis (CIP) is a side product of chemotherapy treatment for malignant tumors, which affects the therapeutic effect and quality of life of cancer patients, and still lacks a clear therapeutic means. In this study, we investigated the therapeutic effects of QLTMP on CIP using network pharmacology and verified the anti-inflammatory mechanism of QLTMP in mice model induced by vinorelbine. METHODS: Network pharmacology analysis was performed to identify bioactive compounds in QLTMP. The protein-protein interaction network was used to identify the core therapeutic targets of QLTMP against CIP. Analyzed biological function and pathway enrichment based on the identified core therapeutic targets. Evaluate the therapeutic effect of QLTMP in a model of CIP induced by vinorelbine to confirm the reliability of the network pharmacological analysis. MATERIALS AND METHODS: The 165 bioactive compounds of QLTMP matched the screening criteria and identified 19 core therapeutic targets of QLTMP against CIP. Biofunctional analysis showed that the therapeutic effect of QLTMP on CIP was mainly related to the inhibition of inflammation; while pathway enrichment analysis showed that TNF signaling pathway was involved in the inflammatory process. Experimental confirmation in mice model showed that QLTMP exerts anti-inflammatory effects through modulation of PI3K/AKT/TNF signaling pathway, a discovery consistent with the network pharmacological analysis. DISCUSSION AND CONCLUSIONS: The network pharmacological analysis of the anti-inflammatory mechanism of QLTMP on CIP and its exploration of in vivo experiments provide a theoretical basis for the design of agents that can mitigate or cure CIP.

17.
Front Microbiol ; 13: 930495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204612

RESUMO

Candida albicans is a prevalent, opportunistic human fungal pathogen. It usually dwells in the human body as a commensal, however, once in its pathogenic state, it causes diseases ranging from debilitating superficial to life-threatening systemic infections. The switch from harmless colonizer to virulent pathogen is, in most cases, due to perturbation of the fungus-host-microbiota interplay. In this review, we focused on the interactions between C. albicans and the host microbiota in the mouth, gut, blood, and vagina. We also highlighted important future research directions. We expect that the evaluation of these interplays will help better our understanding of the etiology of fungal infections and shed new light on the therapeutic approaches.

18.
Transl Res ; 247: 39-57, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35452875

RESUMO

Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.


Assuntos
Azóis , Micoses , Antifúngicos/farmacologia , Azóis/farmacologia , Azóis/uso terapêutico , Receptores ErbB , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia
19.
Biol Pharm Bull ; 34(5): 624-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21532148

RESUMO

Genome plasticity is a hallmark of Candida albicans and is believed to be an adaptation strategy. But the extent of such genomic variability is not well investigated. In this study, genetic contents of clinical C. albicans isolates were investigated at whole-genome level with array-based comparative genomic hybridization (array CGH) technology. It was revealed that C. albicans possessed variations of genetic contents, as well as aneuploidy. The variable genes were scattered across the chromosomes, as well clustered in particular regions, including sub-telomeric regions, retrotransposon-insertion sites and a variable region on chromosome 6.


Assuntos
Candida albicans/genética , Adaptação Fisiológica/genética , Sequência de Bases , Candida albicans/isolamento & purificação , Candida albicans/fisiologia , Cromossomos Fúngicos , Hibridização Genômica Comparativa , Primers do DNA , Dosagem de Genes , Genes Fúngicos , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Retroelementos
20.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33837402

RESUMO

Candida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress, and cell wall stress. We found that most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.


Assuntos
Candida albicans/genética , Cromossomos Fúngicos/genética , Aptidão Genética , Trissomia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Genoma Fúngico , Interações entre Hospedeiro e Microrganismos/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA