Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 300(6): 107311, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657866

RESUMO

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.

2.
J Hepatol ; 79(6): 1435-1449, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689322

RESUMO

BACKGROUND & AIMS: Remodeling the tumor microenvironment is a critical strategy for treating advanced hepatocellular carcinoma (HCC). Yet, how distinct cell populations in the microenvironment mediate tumor resistance to immunotherapies, such as anti-PD-1, remains poorly understood. METHODS: We analyzed the transcriptomic profile, at a single-cell resolution, of tumor tissues from patients with HCC scheduled to receive anti-PD-1-based immunotherapy. Our comparative analysis and experimental validation using flow cytometry and histopathological analysis uncovered a discrete subpopulation of cells associated with resistance to anti-PD-1 treatment in patients and a rat model. A TurboID-based proximity labeling approach was deployed to gain mechanistic insights into the reprogramming of the HCC microenvironment. RESULTS: We identified CD10+ALPL+ neutrophils as being associated with resistance to anti-PD-1 treatment. These neutrophils exhibited a strong immunosuppressive activity by inducing an apparent "irreversible" exhaustion of T cells in terms of cell number, frequency, and gene profile. Mechanistically, CD10+ALPL+ neutrophils were induced by tumor cells, i.e., tumor-secreted NAMPT reprogrammed CD10+ALPL+ neutrophils through NTRK1, maintaining them in an immature state and inhibiting their maturation and activation. CONCLUSIONS: Collectively, our results reveal a fundamental mechanism by which CD10+ALPL+ neutrophils contribute to tumor immune escape from durable anti-PD-1 treatment. These data also provide further insights into novel immunotherapy targets and possible synergistic treatment regimens. IMPACT AND IMPLICATIONS: Herein, we discovered that tumor cells reprogrammed CD10+ALPL+ neutrophils to induce the "irreversible" exhaustion of T cells and hence allow tumors to escape from the intended effects of anti-PD-1 treatment. Our data provided a new theoretical basis for the elucidation of special cell populations and revealed a molecular mechanism underpinning resistance to immunotherapy. Targeting these cells alongside existing immunotherapy could be looked at as a potentially more effective therapeutic approach.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linfócitos T , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neutrófilos , Imunoterapia/métodos , Microambiente Tumoral , Linfócitos T CD8-Positivos , Fosfatase Alcalina
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 893-903, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36924251

RESUMO

Gastric cancer (GC) is an aggressive malignant disease which still lacks effective early diagnosis markers and targeted therapies, representing the fourth-leading cause of cancer-associated death worldwide. The Hippo signaling pathway plays crucial roles in organ size control and tissue homeostasis under physiological conditions, yet its aberrations have been closely associated with several hallmarks of cancer. The last decade witnessed a burst of investigations dissecting how Hippo dysregulation contributes to tumorigenesis, highlighting the therapeutic potential of targeting this pathway for tumor intervention. In this review, we systemically document studies on the Hippo pathway in the contexts of gastric tumor initiation, progression, metastasis, acquired drug resistance, and the emerging development of Hippo-targeting strategies. By summarizing major open questions in this field, we aim to inspire further in-depth understanding of Hippo signaling in GC development, as well as the translational implications of targeting Hippo for GC treatment.


Assuntos
Via de Sinalização Hippo , Neoplasias Gástricas , Humanos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica
4.
J Biol Chem ; 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728243

RESUMO

This article has been withdrawn by the authors. Some of the SDHA enzyme activity data were flawed and were not performed and analyzed correctly. The withdrawing authors are in the process of correcting the data and re-evaluating them for resubmission.

5.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512451

RESUMO

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Assuntos
Alanina-tRNA Ligase , Transdução de Sinais , Neoplasias Gástricas , Fatores de Transcrição , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ácido Láctico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo
6.
Nat Commun ; 14(1): 6416, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828059

RESUMO

Alteration of the size and stiffness of the nucleus triggered by environmental cues are thought to be important for eukaryotic cell fate and function. However, it remains unclear how context-dependent nuclear remodeling occurs and reprograms gene expression. Here we identify the nuclear envelope proteins SUN1/2 as mechano-regulators of the nucleus during M1 polarization of the macrophage. Specifically, we show that LPS treatment decreases the protein levels of SUN1/2 in a CK2-ßTrCP-dependent manner to shrink and soften the nucleus, therefore altering the chromatin accessibility for M1-associated gene expression. Notably, the transmembrane helix of SUN1/2 is solely required and sufficient for the nuclear mechano-remodeling. Consistently, SUN1/2 depletion in macrophages facilitates their phagocytosis, tissue infiltration, and proinflammatory cytokine production, thereby boosting the antitumor immunity in mice. Thus, our study demonstrates that, in response to inflammatory cues, SUN1/2 proteins act as mechano-regulators to remodel the nucleus and chromatin for M1 polarization of the macrophage.


Assuntos
Núcleo Celular , Proteínas Associadas aos Microtúbulos , Animais , Camundongos , Núcleo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/metabolismo
7.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35290241

RESUMO

The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.


Assuntos
Neoplasias Gastrointestinais , Monoéster Fosfórico Hidrolases , Animais , Humanos , Mamíferos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais/fisiologia , Mutações Sintéticas Letais , Fatores de Transcrição
8.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271880

RESUMO

Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Meios de Cultura Livres de Soro , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Estresse Fisiológico , Fatores de Transcrição/química , Resultado do Tratamento , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
9.
Oncol Lett ; 17(2): 2020-2030, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675269

RESUMO

Receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) serves a crucial role in brain development. ALK is located on the short arm of chromosome 2 (2p23) and exchange of chromosomal segments with other genes, including nucleophosmin (NPM), echinoderm microtubule-associated protein-like 4 (EML4) and Trk-fused gene (TFG), readily occurs. Such chromosomal translocation results in the formation of chimeric X-ALK fusion oncoproteins, which possess potential oncogenic functions due to constitutive activation of ALK kinase. These proteins contribute to the pathogenesis of various hematological malignancies and solid tumors, including lymphoma, lung cancer, inflammatory myofibroblastic tumors (IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive tract cancer, breast cancer, leukemia and ovarian carcinoma. Targeting of ALK fusion oncoproteins exclusively, or in combination with ALK kinase inhibitors including crizotinib, is the most common therapeutic strategy. As is often the case for small-molecule tyrosine kinase inhibitors (TKIs), drug resistance eventually develops via an adaptive secondary mutation in the ALK fusion oncogene, or through engagement of alternative signaling mechanisms. The updated mechanisms of a variety of ALK fusions in tumorigenesis, proliferation and metastasis, in addition to targeted therapies are discussed below.

10.
Cancer Res ; 77(18): 5107-5117, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760855

RESUMO

Oncogenic KIT or PDGFRA receptor tyrosine kinase (RTK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GIST. Most GISTs eventually acquire imatinib resistance due to secondary mutations in the KIT kinase domain, but it is unclear whether these genomic resistance mechanisms require other cellular adaptations to create a clinically meaningful imatinib-resistant state. Using phospho-RTK and immunoblot assays, we demonstrate activation of KIT and insulin receptor (IR) in imatinib-resistant GIST cell lines (GIST430 and GIST48) and biopsies with acquisition of KIT secondary mutations, but not in imatinib-sensitive GIST cells (GIST882 and GIST-T1). Treatment with linsitinib, a specific IR inhibitor, inhibited IR and downstream intermediates AKT, MAPK, and S6 in GIST430 and GIST48, but not in GIST882, exerting minimal effect on KIT phosphorylation in these cell lines. Additive effects showing increased apoptosis, antiproliferative effects, cell-cycle arrest, and decreased pAKT and pS6 expression, tumor growth, migration, and invasiveness were observed in imatinib-resistant GIST cells with IR activation after coordinated inhibition of IR and KIT by linsitinib (or IR shRNA) and imatinib, respectively, compared with either intervention alone. IGF2 overexpression was responsible for IR activation in imatinib-resistant GIST cells, whereas IR activation did not result from IR amplification, IR mutation, or KIT phosphorylation. Our findings suggest that combinatorial inhibition of IR and KIT warrants clinical evaluation as a novel therapeutic strategy in imatinib-resistant GISTs. Cancer Res; 77(18); 5107-17. ©2017 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Animais , Antígenos CD , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Camundongos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA